Skip to main content
Log in

Principal manifold learning by sparse grids

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we deal with the construction of lower-dimensional manifolds from high-dimensional data which is an important task in data mining, machine learning and statistics. Here, we consider principal manifolds as the minimum of a regularized, non-linear empirical quantization error functional. For the discretization we use a sparse grid method in latent parameter space. This approach avoids, to some extent, the curse of dimension of conventional grids like in the GTM approach. The arising non-linear problem is solved by a descent method which resembles the expectation maximization algorithm. We present our sparse grid principal manifold approach, discuss its properties and report on the results of numerical experiments for one-, two- and three-dimensional model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.cse.msu.edu/~lawhiu/manifold/

  2. http://www.cs.ubc.ca/~mwill/dimreduct.htm

  3. http://www.iro.umontreal.ca/~kegl/research/pcurves/implementations/index.html

  4. Aronzaijn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68: 337–404

    Article  Google Scholar 

  5. Babenko K (1960) Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math Dokl 1:672–675. Russian original in Dokl. Akad. Nauk SSSR, 132 (1960), pp. 982–985

  6. Balder R (1994) Adaptive Verfahren für elliptische und parabolische Differentialgleichungen. Dissertation, Technische Universität München

  7. Balder R, Zenger C (1996) The solution of the multidimensional real Helmholtz equation on sparse grids. SIAM J Sci Comp 17: 631–646

    Article  MATH  MathSciNet  Google Scholar 

  8. Banks D, Olszewski R (1997) Estimating local dimensionality. In: Proceedings of the Statistical Computing Section of the American Statistical Society, ASA

  9. Bishop C, James G (1993) Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nucl Instrum Methods Phys Res A327: 580–593

    Google Scholar 

  10. Bishop C, Svensen M, Williams C (1998) GTM: the generative topographic mapping. Neural Comput 10(2): 215–234

    Article  Google Scholar 

  11. Bishop C, Svensen M, Williams C (1998) Developments of the generative topographic mapping. Neurocomputing 21: 203–224

    Article  MATH  Google Scholar 

  12. Bonk T (1994) Ein rekursiver Algorithmus zur adaptiven numerischen Quadratur mehrdimensionaler Funktionen. Dissertation, Institut für Informatik, Technische Universität München

  13. Broomhead D, King G (1986) Extracting qualitative dynamics from experimental data. Phys D 20: 217

    Article  MATH  MathSciNet  Google Scholar 

  14. Broomhead D, Kirby M (2000) A new approach to dimensionality reduction: Theory and algorithms. SIAM J Appl Math 60(6): 2114–2142

    Article  MATH  MathSciNet  Google Scholar 

  15. Bruske J, Summer G (1998) Intrinsic dimensionality estimation with optimally topology preserving maps. IEEE Trans Pattern Anal Mach Intel 20(5): 572–575

    Article  Google Scholar 

  16. Bungartz H-J (1992) An adaptive Poisson solver using hierarchical bases and sparse grids. In: Iterative methods in linear algebra. Elsevier, Amsterdam, pp 293–310

  17. Bungartz H-J, Griebel M (1999) A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J Complexity 15: 167–199

    Article  MATH  MathSciNet  Google Scholar 

  18. Bungartz H-J, Griebel M (2004) Sparse grids. Acta Numer 13: 1–121

    Article  MathSciNet  Google Scholar 

  19. Chang K, Ghosh J (2001) A unified model for probabilistic principal surfaces. IEEE Trans Pattern Anal Mach Intel 23(1): 22–41

    Article  Google Scholar 

  20. Chang K, Ghosh J (2005) Probabilistic principal surfaces classifier. In: Wang L, Jin Y (eds) FSKD 2005. LNAI, vol 3614, pp 1236–1244

  21. Carreira-Perpinan M (1997) A review of dimension reduction techniques. Technical Report CS-96-09. Department of Computer Science, University of Sheffield

  22. Delicado P (2001) Another look at principal curves and surfaces. J Multivar Anal 77(1): 84–116

    Article  MATH  MathSciNet  Google Scholar 

  23. Delvos F, Schempp W (1989) Boolean methods in interpolation and approximation. Pitman Research Notes in Mathematics, vol 230. Longman Scientific and Technical, Harlow

  24. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1): 1–38

    MATH  MathSciNet  Google Scholar 

  25. Der R, Steinmetz U, Balzuweit G (1998) Nonlinear principal component analysis. Technical Report, Institut für Informatik, Universität Leipzig

  26. DeVore R, Konyagin S, Temlyakov V (1998) Hyperbolic wavelet approximation. Constr Approx 14: 1–26

    Article  MathSciNet  Google Scholar 

  27. Dong D, McAvoy T (1995) Nonlinear principal component analysis, based on principal curves and neural networks. Comput Chem Eng 20(1): 65–78

    Article  Google Scholar 

  28. Evgeniou T, Pontil M, Poggio T (2000) Regularization networks and support vector machines. Adv Comput Math 13: 1–50

    Article  MATH  MathSciNet  Google Scholar 

  29. Feuersänger C (2005) Dünngitterverfahren für hochdimensionale elliptische partielle Differentialgleichungen. Diplomarbeit, Institut für Numerische Simulation, Universität Bonn

  30. Garcke J, Griebel M (2000) On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J Comput Phys 165: 694–716

    Article  MATH  MathSciNet  Google Scholar 

  31. Garcke J, Hegland M (2006) Fitting multidimensional data using gradient penalties and combination techniques. In: Proceedings of HPSC. Hanoi, Vietnam

  32. Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithms 18: 209–232

    Article  MATH  MathSciNet  Google Scholar 

  33. Gerstner T, Griebel M (2003) Dimension-adaptive tensor-product quadrature. Computing 71(1): 65–87

    Article  MATH  MathSciNet  Google Scholar 

  34. Gordon W (1971) Blending function methods of bivariate and multivariate interpolation and approximation. SIAM J Numer Anal 8: 158–177

    Article  MATH  MathSciNet  Google Scholar 

  35. Griebel M (2006) Sparse grids and related approximation schemes for higher dimensional problems. In: Pardo L, Pinkus A, Suli E, Todd MJ (eds) Proceedings of the conference on foundations of computational mathematics (FoCM05), Santander, Spain (2005), Foundations of Computational Mathematics. LMS, vol 331, Cambridge University Press, Cambridge

  36. Griebel M (1998) Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2): 151–179

    Article  MATH  MathSciNet  Google Scholar 

  37. Griebel M, Knapek S (2000) Optimized tensor-product approximation spaces. Constr Approx 16(4): 525–540

    Article  MATH  MathSciNet  Google Scholar 

  38. Griebel M, Oswald P (1994) On additive Schwarz preconditioners for sparse grid discretizations. Numer Math 66: 449–464

    Article  MATH  MathSciNet  Google Scholar 

  39. Griebel M, Oswald P (1995) Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv Comput Math 4: 171–206

    Article  MATH  MathSciNet  Google Scholar 

  40. Griebel M, Zenger C, Zimmer S (1993) Multilevel Gauss-Seidel-algorithms for full and sparse grid problems. Computing 50: 127–148

    Article  MATH  MathSciNet  Google Scholar 

  41. Hastie T (1984) Principal curves and surfaces. Ph.D. Thesis, Stanford University

  42. Hastie T, Stuetzle W (1989) Principal curves. J Am Stat Assoc 84(406): 502–516

    Article  MATH  MathSciNet  Google Scholar 

  43. Huo X, Ni X, Smith A (2006) A survey of manifold-based learning methods. In: Mining of enterprise data, emerging nonparametric methodology, chapter 1. Springer, New York

  44. Jamshidi AA, Kirby MJ (2007) Towards a black box algorithm for nonlinear function approximation over high-dimensional domains. SIAM J Sci Comput 29(3): 941–963

    Article  MATH  MathSciNet  Google Scholar 

  45. Jollife I (1986) Principal component analysis. Springer, New York

    Google Scholar 

  46. Jost J (1994) Differentialgeometrie und Minimalflächen. Springer, Heidelberg

    MATH  Google Scholar 

  47. Kégl B (1999) Principal curves: learning, design, and applications. Ph.D. Thesis, Concordia University, Canada

  48. Kégl B, Krzyzak A, Linder T, Zeger K (2000) Learning and design of principal curves. IEEE Trans Pattern Anal Mach Intel 22(3): 281–297

    Article  Google Scholar 

  49. Kimmelsdorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33: 82–95

    Article  MathSciNet  Google Scholar 

  50. Kirby M (2001) Geometric data analysis: an empirical approach to dimensionality reduction and the study of patterns. Wiley, New York

    MATH  Google Scholar 

  51. Kramer M (1991) Nonlinear principal component analysis using autoassociative neural networks. AIChE J 37: 233–243

    Article  Google Scholar 

  52. Minka T (2001) Automatic choice of dimensionality for PCA. In: Leen T, Dietterich T, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 598–604

  53. Owen A (2004) Multidimensional variation for quasi-Monte Carlo. Technical Report 2004-02, Department of Statistics, Stanford Univ

  54. Press W, Flannery B, Teukolsky S, Vetterling W (1992) Numerical recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  55. Paskov S (1993) Average case complexity of multivariate integration for smooth functions. J Complexity 9(2): 291–312

    Article  MATH  MathSciNet  Google Scholar 

  56. Sandilya S, Kulkarni S (2000) Principal curves with bounded turn. IEEE Trans Inf Theory 48(10): 2789–2793

    Article  MathSciNet  Google Scholar 

  57. Schwab C, Todor R (2003) Sparse finite elements for stochastic elliptic problems-higher order moments. Computing 71: 43–63

    Article  MATH  MathSciNet  Google Scholar 

  58. Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge

    Google Scholar 

  59. Schölkopf B, Herbrich R, Smola A, Williamson R (2001) A generalized representer theorem. Technical Report 200-81, NeuroCOLT 2000. In: Proceedings COLT’2001. Lecture Notes on Artificial Intelligence. Springer, Heidelberg

  60. Smola A, Mika S, Schölkopf B, Williamson R (2001) Regularized principal manifolds. J Mach Learn Res 1: 179–209

    Article  MATH  MathSciNet  Google Scholar 

  61. Smolyak S (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math Dokl. 4:240–243. [Russian original in Dokl. Akad. Nauk SSSR, 148:1042–1045]

  62. Takens F (1981) Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence. Rand D, Young L (eds) Lecture Notes in Mathematics. Springer, New York, p 366

  63. Tibshirani R (1992) Principal curves revisited. Stat Comput 2: 183–190

    Article  Google Scholar 

  64. Wahba G (1990) Spline models for observational data. Volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  65. Whitney H (1936) Differentiable manifolds. Ann Math 37: 645–680

    Article  MathSciNet  Google Scholar 

  66. Zenger C (1991) Sparse grids. In: Hackbusch W (ed) Parallel Algorithms for Partial Differential Equations. NNFM, vol 31, Vieweg, Braunschweig/Wiesbaden

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Griebel.

Additional information

Communicated by W. Hackbusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuersänger, C., Griebel, M. Principal manifold learning by sparse grids. Computing 85, 267–299 (2009). https://doi.org/10.1007/s00607-009-0045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0045-8

Keywords

Mathematics Subject Classification (2000)

Navigation