Advertisement

Computing

, Volume 78, Issue 2, pp 101–115 | Cite as

A Refined Finite Element Convergence Theory for Highly Indefinite Helmholtz Problems

  • S. A. SauterEmail author
Article

Abstract.

It is well known that standard h-version finite element discretisations using lowest order elements for Helmholtz' equation suffer from the following stability condition: ``The mesh width h of the finite element mesh has to satisfy k 2 h≲1'', where k denotes the wave number. This condition rules out the reliable numerical solution of Helmholtz equation in three dimensions for large wave numbers k≳50. In our paper, we will present a refined finite element theory for highly indefinite Helmholtz problems where the stability of the discretisation can be checked through an ``almost invariance'' condition. As an application, we will consider a one-dimensional finite element space for the Helmholtz equation and apply our theory to prove stability under the weakened condition hk≲1 and optimal convergence estimates.

AMS Subject Classifications

65N12 65N15 65N30 

Keywords

Indefinite problems Helmholtz equation finite element methods generalized FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud, N., Pinsky, P. 1992Finite element dispersion analysis for the 3-dimensional 2nd-order scalar wave-equationInt. J. Num. Meth. Engng.3511831218zbMATHCrossRefGoogle Scholar
  2. Ainsworth, M.: Discrete dispersion relation for hp-finite element approximation at high wave number. SIAM J. Num. Anal. (to appear).Google Scholar
  3. Babuška, I., Ihlenburg, F.: Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Num. Meth. Engng. 38, (1995).Google Scholar
  4. Babuška, I., Sauter, S. 1997Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbersSIAM J. Num. Anal.3423922423Google Scholar
  5. Babuška, I. M., Ihlenburg, F., Paik, E. T., Sauter, S. A. 1995A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollutionComp. Meth. Appl. Mech. Engng.128325359CrossRefGoogle Scholar
  6. Banjai, L., Sauter, S.: A refined Galerkin error and stability analysis for highly indefinite variational problems. Technical report, Universität Zürich, 2006. Preprint no. 03-2006. SIAM J. Num. Anal. (to appear).Google Scholar
  7. Deraemaeker, A., Babuška, I., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimesnions. Int. J. Num. Meth. Engng. 46(4), (1999).Google Scholar
  8. Gerdes, K., Ihlenburg, F.: On the pollution effect in finite element solutions of the 3D Helmholtz equation. Comput. Meth. Appl. Mech. Engng. 170(1–2), (1999).Google Scholar
  9. Harari, I. 1997Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acousticsComput. Meth. Appl. Mech. Engng.1403958zbMATHMathSciNetCrossRefGoogle Scholar
  10. Harari, I. 2001Finite element dispersion of cylindrical and spherical acoustic wavesComput. Meth. Appl. Mech. Engng.19025332542zbMATHCrossRefGoogle Scholar
  11. Harari, I., Avraham, D. 1997High-order finite element methods for acoustic problemsJ. Comput. Acoust.53351CrossRefGoogle Scholar
  12. Harari, I., Hughes, T.: Finite element methods for the Helmholtz equation in an exterior domain: Model problems. Comput. Meth. Appl. Mech. Engng. 87, 59–96. North Holland 1991.Google Scholar
  13. Ihlenburg, F. 1998Finite element analysis of acousting scatteringSpringerNew YorkCrossRefGoogle Scholar
  14. Ihlenburg, F., Babuška, I. 1995Finite element solution to the Helmholtz equation with high wave number. Part I: The h-version of the FEMComp. Math. Appl.39937CrossRefGoogle Scholar
  15. Ihlenburg, F., Babuška, I. 1997Finite element solution to the Helmholtz equation with high wave number. Part II: The h-p version of the FEMSiam J. Num. Anal.34315358zbMATHCrossRefGoogle Scholar
  16. Melenk, J. M.: On generalized finite element methods. PhD thesis, University of Maryland at College Park, 1995.Google Scholar
  17. Oberai, A., Pinsky, P. 2000A numerical comparison of finite element methods for the Helmholtz equationJ. Comput. Acoust.8211221MathSciNetGoogle Scholar
  18. Schatz, A. 1974An obeservation concerning Ritz-Galerkin methods with indefinite bilinear formsMath. Comp.28959962zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations