Skip to main content
Log in

An Algebraic Multigrid Method for Higher-order Finite Element Discretizations

  • Published:
Computing Aims and scope Submit manuscript


In this paper, we will design and analyze a class of new algebraic multigrid methods for algebraic systems arising from the discretization of second order elliptic boundary value problems by high-order finite element methods. For a given sparse stiffness matrix from a quadratic or cubic Lagrangian finite element discretization, an algebraic approach is carefully designed to recover the stiffness matrix associated with the linear finite element disretization on the same underlying (but nevertheless unknown to the user) finite element grid. With any given classical algebraic multigrid solver for linear finite element stiffness matrix, a corresponding algebraic multigrid method can then be designed for the quadratic or higher order finite element stiffness matrix by combining with a standard smoother for the original system. This method is designed under the assumption that the sparse matrix to be solved is associated with a specific higher order, quadratic for example, finite element discretization on a finite element grid but the geometric data for the underlying grid is unknown. The resulting new algebraic multigrid method is shown, by numerical experiments, to be much more efficient than the classical algebraic multigrid method which is directly applied to the high-order finite element matrix. Some theoretical analysis is also provided for the convergence of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • R. Bank J. Xu (1996) ArticleTitleAn algorithm for coarsing unstructured meshes Numer. Math. 73 IssueID1 1–36 Occurrence Handle1379277 Occurrence Handle10.1007/s002110050181

    Article  MathSciNet  Google Scholar 

  • J. H. Bramble J. E. Pasciak J. Wang J. Xu (1991) ArticleTitleConvergence estimates for multigrid algorithms without regularity assumptions Math. Comp. 57 IssueID195 23–45 Occurrence Handle1079008 Occurrence Handle10.2307/2938661

    Article  MathSciNet  Google Scholar 

  • A. Brandt (1977) ArticleTitleMulti-level adaptive solutions to boundary-value problems Math. Comp. 31 333–390 Occurrence Handle0373.65054 Occurrence Handle431719 Occurrence Handle10.2307/2006422

    Article  MATH  MathSciNet  Google Scholar 

  • Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD-Studien Nr. 85. Gesellschaft für Mathematik und Datenverarbeitung, St. Augustin, Germany, 1984.

  • A. Brandt S. F. McCormick J. W. Ruge (1983) ArticleTitleMultigrid methods for differential eigenproblems SIAM J. Sci. Stat. Comput. 4 244–260 Occurrence Handle697178 Occurrence Handle10.1137/0904019

    Article  MathSciNet  Google Scholar 

  • A. Brandt (1984) Algebraic multigrid (AMG) for sparse matrix equations D. J. Evans (Eds) Sparsity and its application Cambridge University Press Cambridge

    Google Scholar 

  • Brandt, A.: Multiscale scientific computation. Six year research summary 1999.

  • A. Brandt S. F. McCormick J. W. Ruge (1984) Algebraic multigrid (AMG) for sparse matrix equations D. J. Evans (Eds) Sparsity and its applications Cambridge University Press Cambridge

    Google Scholar 

  • M. Brezina A. J. Cleary R. D. Falgout V. E. Henson J. E. Jones T. A. Manteuffel S. F. McCormick J. W. Ruge (2000) ArticleTitleAlgebraic multigrid based on element interpolation (AMGe) SIAM J. Sci. Comput. 22 IssueID5 1570–1592 Occurrence Handle1813287 Occurrence Handle10.1137/S1064827598344303

    Article  MathSciNet  Google Scholar 

  • Chan, T. F., Xu, J., Zikatanov, L.: An agglomeration multigrid method for unstructured grids in 10th Int. Conf. on Domain Decomposition Methods. Contemporary Mathematics, vol. 218. AMS, pp. 67–81 (1998).

  • J. E. Dendy (1982) ArticleTitleBlack box multigrid J. Comput. Phys. 48 366–386 Occurrence Handle0495.65047 Occurrence Handle684260 Occurrence Handle10.1016/0021-9991(82)90057-2

    Article  MATH  MathSciNet  Google Scholar 

  • Y. R. Efendiev T. Y. Hou Z.-H. Wu (2000) ArticleTitleConvergence of a nonconforming multiscale finite element method SIAM J. Numer. Anal. 37 IssueID3 888–910 Occurrence Handle1740386 Occurrence Handle10.1137/S0036142997330329

    Article  MathSciNet  Google Scholar 

  • W. Hackbusch (1985) Multigrid methods and applications. Computational Mathematics, vol. 4 Springer Berlin

    Google Scholar 

  • Henson, V. E., Vassilevski, P.S.: Element-free AMGe: general algorithms for computing interpolation weights in AMG. SIAM J. Sci. Comput. 23, 629–650 (electronic) (2001). Copper Mountain Conference 2000.

    Google Scholar 

  • P. S. V. J. E. Jones (2001) ArticleTitleAMGe based element agglomeration SIAM J. Sci. Comput. 23 109–133 Occurrence Handle0992.65140 Occurrence Handle1860907 Occurrence Handle10.1137/S1064827599361047

    Article  MATH  MathSciNet  Google Scholar 

  • J. Mandel M. Brezina P. Vanek (1999) ArticleTitleEnergy optimization of algebraic multigrid bases Computing 62 IssueID3 205–228 Occurrence Handle1697843 Occurrence Handle10.1007/s006070050022

    Article  MathSciNet  Google Scholar 

  • J. Mandel G. S. Lett (1991) ArticleTitleDomain decomposition preconditioning of p-version finite elements with high aspect ratios Appl. Num. Math. 8 411–425 Occurrence Handle1136835 Occurrence Handle10.1016/0168-9274(91)90077-D

    Article  MathSciNet  Google Scholar 

  • Ruge, J.: AMG for higher-order discretizations of second-order elliptic problems. Presented at 11th Copper Mountain Conference on Multigrid Methods 2003.

  • J. Ruge K. Stüben (1987) Algebraic multigrid S. McCormick (Eds) Multigrid methods SIAM Philadelphia, PA

    Google Scholar 

  • S. Shi X. Jinchao X. Yingxiong L. Zikatanov (2002) Algebraic multigrid method on lattice block materials T. F. Chan (Eds) et al. Recent Progress in Computional and Applied PDEs Boston London 289–307

    Google Scholar 

  • Stüben, K.: A review of algebraic multigrid. GMD Report 69, 1999.

  • Trottenberg, U., Oosterlee, C. W., Schuller, A.: Multigrid. San Diego, CA: Academic Press 2001. With contributions by A. Brandt, P. Oswald and K. Stiiben.

  • P. Vanek J. Mandel M. Brezina (1996) ArticleTitleAlgebraic multigrid by smoothed aggregation for second- and fourth-order elliptic problems Computing 56 IssueID3 179–196 Occurrence Handle1393006 Occurrence Handle10.1007/BF02238511

    Article  MathSciNet  Google Scholar 

  • P. Vanek M. Brezina J. Mandel (2001) ArticleTitleConvergence of algebraic multigrid based on smoothed aggregation Numer. Math. 88 IssueID3 559–579 Occurrence Handle1835471 Occurrence Handle10.1007/s211-001-8015-y

    Article  MathSciNet  Google Scholar 

  • W. L. Wan T. F. Chan B. Smith (2000) ArticleTitleAn energy-minimizing interpolation for robust multigrid methods SIAM J. Sci. Comput. 21 IssueID3 559–579 Occurrence Handle1756048

    MathSciNet  Google Scholar 

  • J. Xu (1992) ArticleTitleIterative methods by space decomposition and subspace correction SIAM Rev. 34 581–613 Occurrence Handle0788.65037 Occurrence Handle1193013 Occurrence Handle10.1137/1034116

    Article  MATH  MathSciNet  Google Scholar 

  • J. Xu L. Zikatanov (2002) ArticleTitleThe method of alternating projections and the method of subspace corrections on Hilbert space J. AMS 15 1429–1446 Occurrence Handle1896233

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, S., Sun, D. & Xu, J. An Algebraic Multigrid Method for Higher-order Finite Element Discretizations. Computing 77, 347–377 (2006).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

AMS Subject Classifications