Skip to main content
Log in

Two-level Stabilized Finite Element Methods for the Steady Navier–Stokes Problem

  • Published:
Computing Aims and scope Submit manuscript

Abstract.

In this article, the two-level stabilized finite element formulations of the two-dimensional steady Navier–Stokes problem are analyzed. A macroelement condition is introduced for constructing the local stabilized formulation of the steady Navier–Stokes problem. By satisfying this condition the stability of the Q1P0 quadrilateral element and the P1P0 triangular element are established. Moreover, the two-level stabilized finite element methods involve solving one small Navier–Stokes problem on a coarse mesh with mesh size H, a large Stokes problem for the simple two-level stabilized finite element method on a fine mesh with mesh size h=O(H2) or a large general Stokes problem for the Newton two-level stabilized finite element method on a fine mesh with mesh size h=O(|log h|1/2H3). The methods we study provide an approximate solution (uh,ph) with the convergence rate of same order as the usual stabilized finite element solution, which involves solving one large Navier–Stokes problem on a fine mesh with mesh size h. Hence, our methods can save a large amount of computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait Ou Ammi, A., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier–Stokes equations. Numer. Math. 68, 189–213 (1994).

    Google Scholar 

  2. Babuska, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35, 1039–1062 (1980).

    Google Scholar 

  3. Boland, J., Nicolaides, R. A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20, 722–731 (1983).

    Google Scholar 

  4. Bercovier, J., Pironneau, O.: Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211–224 (1979).

    Google Scholar 

  5. Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp. 50, 1–17 (1988).

    Google Scholar 

  6. Brezzi, F., Pitkäranta, J.: On the stabilisation of finite element approximations of the Stokes problems. Efficient solutions of elliptic systems (Hackbusch, W., ed.), pp. 11–19. Notes on Numerical Fluid Mechanics, vol. 10. Braunschweig: Vieweg 1984.

  7. Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.

  8. Douglas, Jr. J., Wang, J.: A absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989).

    Google Scholar 

  9. Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-levelfinite element method for the Navier–Stokes equations. Numer. Meth. PDEs 12, 333–346 (1996).

    Google Scholar 

  10. Girault, V., Raviart, P. A.: Finite element method for Navier–Stokes equations: theory and algorithms. Berlin Heidelberg: Springer 1986.

  11. Yinnian He.: A fully discrete stabilized finite-element method for the time-dependent Navier–Stokes problem. IMA J. Numer. Anal. 23, 665–691 (2003).

    Google Scholar 

  12. Yinnian He., Kaitai Li.: Convergence and stability of finite element nonlinear Galerkin method for the Navier–Stokes equations. Numer. Math. 79, 77–107 (1998).

    Google Scholar 

  13. Hughes, T. J. R., Franca, L. P.: A new finite element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. Appl. Mech. Engng. 65, 85–97 (1987).

    Google Scholar 

  14. Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982).

    Google Scholar 

  15. Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976).

    Google Scholar 

  16. Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21, 1321–1337 (2000).

    Google Scholar 

  17. Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comp. 58, 1–10 (1992).

    Google Scholar 

  18. Ladyzenskaja, O. A.: Mathematical questions of viscous non-compressible fluid dynamics. M. Nauka, 1970, pp. 288.

  19. Layton, W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993).

    Google Scholar 

  20. Layton, W., Lenferink, W.: Two-level Picard, defect correction for the Navier–Stokes equations. Appl. Math. Comput. 80, 1–12 (1995).

    Google Scholar 

  21. Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998).

    Google Scholar 

  22. Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32, 1170–1184 (1995).

    Google Scholar 

  23. Sani, R. L., Gresho, P. M., Lee, R. L., Griffiths, D. F.: The cause and cure(?) of the spurious pressures generated by certain finite element method solutions of the incompressible Navier–Stokes equations. Parts 1 and 2. Int. J. Numer. Meth. Fluids 1, 17–43; 171–204 (1981).

    Google Scholar 

  24. Silvester, D. J., Kechkar, N.: Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comp. Meth. Appl. Mech. Engng. 79, 71–87 (1990).

    Google Scholar 

  25. Stenberg, R.: Analysis of mixed finite elements for the Stokes problem: A unified approach. Math. Comp. 42, 9–23 (1984).

    Google Scholar 

  26. Temam, R.: Navier–Stokes equations, theory and numerical analysis. 3rd ed. Amsterdam: North-Holland 1983.

  27. Verfürth, R.: A multilevel algorithm for mixed problems. SIAM J. Numer. Anal. 21, 264–271 (1984).

    Google Scholar 

  28. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994).

    Google Scholar 

  29. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1778 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Li, K. Two-level Stabilized Finite Element Methods for the Steady Navier–Stokes Problem. Computing 74, 337–351 (2005). https://doi.org/10.1007/s00607-004-0118-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-004-0118-7

AMS Subject Classifications:

Keywords

Navigation