, Volume 74, Issue 3, pp 249–271 | Cite as

Approximation of Integral Operators by Open image in new window -Matrices with Adaptive Bases

  • S. Börm


Open image in new window -matrices can be used to construct efficient approximations of discretized integral operators. The Open image in new window -matrix approximation can be constructed efficiently by interpolation, Taylor or multipole expansion of the integral kernel function, but the resulting representation requires a large amount of storage.

In order to improve the efficiency, local Schur decompositions can be used to eliminate redundant functions from an original approximation, which leads to a significant reduction of storage requirements and algorithmic complexity.

AMS Subject Classifications:

45B05 65N38 65F30 


Hierarchical matrices data-sparse approximation nested bases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Börm, S., Grasedyck, L.: HLib – a library for Open image in new window- and Open image in new window-matrices 1999. Available at Scholar
  2. Börm, S., Hackbusch, W.: Data-sparse approximation by adaptive Open image in new window-matrices. Computing 69, 1–35 (2002).Google Scholar
  3. Börm, S., Hackbusch, W.: Open image in new window-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43, 129–143 (2002).Google Scholar
  4. Börm, S., Hackbusch, W.: Approximation of boundary element operators by adaptive Open image in new window-matrices. Found. Comput. Math. 312, 58–75 (2004).Google Scholar
  5. Börm, S., Löhndorf, M., Melenk, J. M.: Approximation of integral operators by variable-order interpolation. Tech. Rep. 82, Max-Planck-Institute for Mathematics in the Sciences, 2002. Numer. Math. (to appear).Google Scholar
  6. Börm, S., Sauter, S. A.: BEM with linear complexity for the classical boundary integral operators, Tech. Rep. 15, Institute of Mathematics, University of Zurich, 2003. Math. Comput. (accepted).Google Scholar
  7. Brandt, A., Lubrecht, A. A.: Multilevel matrix multiplication and fast solution of integral equations. J. Comput. Phys. 90, 348–370 (1990).Google Scholar
  8. Dahmen, W., Schneider, R.: Wavelets on manifolds I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999).Google Scholar
  9. Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001).Google Scholar
  10. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of Open image in new window-matrices. Computing 70, 295–334 (2003).Google Scholar
  11. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987).Google Scholar
  12. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace in three dimensions. Acta Numerica. Cambridge: Cambridge University Press, pp. 229–269 (1997).Google Scholar
  13. Hackbusch, W., Khoromskij, B., Sauter, S.: On Open image in new window-matrices. In: Lectures on Applied Mathematics (Bungartz, H., Hoppe, R., Zenger, C, eds.), pp. 9–29. Berlin: Springer 2000.Google Scholar
  14. Hackbusch, W., Nowak, Z. P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989).Google Scholar
  15. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985).Google Scholar
  16. Sauter, S.: Variable order panel clustering (extended version). Tech. Rep. 52, Max-Planck-Institut für Mathematik, Leipzig, Germany 1999.Google Scholar
  17. Sauter, S.: Variable order panel clustering. Computing. 64, 223–261 (2000).Google Scholar
  18. Tausch, J., White, J.: Multiscale bases for the sparse representation of boundary integral operators on complex geometries. SIAM J. Sci. Comput. 24, 1610–1629 (2003).Google Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  1. 1.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations