Skip to main content
Log in

Dimension–Adaptive Tensor–Product Quadrature

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We consider the numerical integration of multivariate functions defined over the unit hypercube. Here, we especially address the high–dimensional case, where in general the curse of dimension is encountered. Due to the concentration of measure phenomenon, such functions can often be well approximated by sums of lower–dimensional terms. The problem, however, is to find a good expansion given little knowledge of the integrand itself. The dimension–adaptive quadrature method which is developed and presented in this paper aims to find such an expansion automatically. It is based on the sparse grid method which has been shown to give good results for low- and moderate–dimensional problems. The dimension–adaptive quadrature method tries to find important dimensions and adaptively refines in this respect guided by suitable error estimators. This leads to an approach which is based on generalized sparse grid index sets. We propose efficient data structures for the storage and traversal of the index sets and discuss an efficient implementation of the algorithm. The performance of the method is illustrated by several numerical examples from computational physics and finance where dimension reduction is obtained from the Brownian bridge discretization of the underlying stochastic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gerstner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstner, T., Griebel, M. Dimension–Adaptive Tensor–Product Quadrature. Computing 71, 65–87 (2003). https://doi.org/10.1007/s00607-003-0015-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-003-0015-5

AMS Subject Classification

Keywords

Navigation