Abstract
Colobanthus (23 species) and Sagina (30–33 species) together are sister to Facchinia. Whereas Facchinia is distributed in western Eurasia, Colobanthus is almost exclusively distributed in the Southern Hemisphere, and Sagina is distributed in both hemispheres with the highest species diversity in western Eurasia. We examined: 1. Whether Sagina and Colobanthus are monophyletic sister genera, 2. Where the two genera originated and how many times dispersal between hemispheres occurred, and 3. Which colonization routes between hemispheres were taken. We reconstructed the phylogeny of Colobanthus and Sagina using nuclear ribosomal internal transcribed spacer (ITS) and two plastid spacers (cpDNA) of altogether 158 ingroup samples of 45 species, and performed molecular dating and ancestral area reconstructions. Sagina and Colobanthus were confirmed as monophyletic sister genera. Biogeographical reconstructions based on ITS and cpDNA showed that Sagina reached the Southern Hemisphere in Australasia or in Africa. For Colobanthus, patterns were less clear and less well-supported: ITS showed Australasia as the region of entry, but cpDNA implied that the Southern Hemisphere may have been entered in America. The extant distributions and the biogeographical histories of Colobanthus and Sagina show both similarities and dissimilarities. This illustrates that biogeographical histories, even of closely related and ecologically very similar lineages, can be highly idiosyncratic.





Similar content being viewed by others
Availability of data and material
All sequences were uploaded on GenBank (https://www.ncbi.nlm.nih.gov/genbank/), and vouchers are deposited in publicly accessible herbaria; GenBank accession numbers and herbarium voucher information are provided in Online Resource 1. Sequence alignments and tree-files are provided on TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S27886).
Code availability
Not applicable.
References
Adams LG (1996) Two new endemic species of Sagina L. (Caryophyllaceae) from Australia. Muelleria 9:63–66
Albach DC, Utteridge T, Wagstaff SJ (2005) Origin of Veroniceae (Plantaginaceae, formerly Scrophulariaceae) on New Guinea. Syst Bot 30:412–423. https://doi.org/10.1600/0363644054223666
Allen HH (1961) Flora of New Zealand, vol. 1. R. E. Owen, Wellington
Assefa A, Ehrich D, Taberlet P, Nemomissa S, Brochmann C (2007) Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina. Heredity 99:133–142. https://doi.org/10.1038/sj.hdy.6800974
Balinsky BI (1962) Patterns of animal distribution on the African continent. Ann Cape Prov Mus, Nat Hist 2:299–310
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.21
Bell CD, Donoghue MJ (2005) Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms Diversity Evol 5:147–159. https://doi.org/10.1016/j.ode.2004.10.014
Bergh NG, Linder HP (2009) Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Molec Phylogen Evol 51:5–18. https://doi.org/10.1016/j.ympev.2008.09.001
Biersma EM, Jackson JA, Hyvönen J, Koskinen S, Linse K, Griffiths H, Convey P (2017) Global biogeographic patterns in bipolar moss species. Roy Soc Open Sci 4:170147. https://doi.org/10.1098/rsos.17014
Biersma EM, Torres-Díaz C, Molina-Montenegro MA, Newsham KK, Vidal MA, Collado GA, Acuña-Rodríguez IS, Ballesteros GI, Figueroa CC, Goodall-Copestake WP, Leppe MA, Cuba-Díaz M, Valladares MA, Pertierra LR, Convey P (2020) Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. J Biogeogr 47:1663–1673. https://doi.org/10.1111/jbi.13843
Binney H, Edwards M, Macias-Fauria M, Lozhkin A, Anderson P, Kaplan JO, Andreev A, Bezrukova E, Blyakharchuk T, Jankovska V, Khazina I, Krivonogov S, Kremenetski K, Nield J, Novenko E, Ryabogina N, Solovieva N, Willis K, Zernitskaya V (2017) Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quatern Sci Rev 157:80–97. https://doi.org/10.1016/j.quascirev.2016.11.022
Bittrich V (1993) Caryophyllaceae. In: Kubitzki K, Rohwer J, Bittrich V (eds) The families and genera of vascular plants. Flowering plants: dicotyledons; magnoliid hamamelid and caryophyllid families, vol. 2. Springer, Berlin, pp 206–236
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computat Biol 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650
Bragg FJ, Prentice IC, Harrison SP, Eglinton G, Foster PN, Rommerskirchen F, Rullkötter J (2013) Stable isotope and modelling evidence for CO2 as a driver of glacial–interglacial vegetation shifts in southern Africa. Biogeosci 10:2001–2010. https://doi.org/10.5194/bg-10-2001-2013
Breitwieser I, Glenny DS, Thorne A, Wagstaff SJ (1999) Phylogenetic relationships in Australasian Gnaphalieae (Compositae) inferred from ITS sequences. New Zealand J Bot 37:399–412. https://doi.org/10.1080/0028825X.1999.9512644
Broughton DA, McAdam JH (2005) A checklist of the native vascular flora of the Falkland Islands (Islas Malvinas): New information on the species present, their ecology, status and distribution. J Torrey Bot Soc 132:115–148. https://doi.org/10.3159/1095-5674(2005)132[115:ACOTNV]2.0.CO;2
Burnham RJ, Graham A (1999) The history of neotropical vegetation: new developments and status. Ann Missouri Bot Gard 6:546–589. https://doi.org/10.2307/2666185
Burtt BL (1971) From the south: an African view of the floras of western Asia. In: Davis PH, Harper PC, Hedge IC (eds) Plant life of south-west Asia. Botanical Society of Edinburgh, Edinburgh, pp 135–149
Bushnell B (2019) BBMap short read aligner, v.38.58. Computer program and documentation distributed by the author. Available at: https://sourceforge.net/projects/bbmap/. Accessed 17 Jul 2019
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Carlson SE, Linder HP, Donoghue MJ (2012) The historical biogeography of Scabiosa (Dipsacaceae): implications for Old World plant disjunctions. J Biogeogr 39:1086–1100. https://doi.org/10.1111/j.1365-2699.2011.02669.x
Chastain A (1958) La flore et la vegetation des îles de Kerguelen. Mém Mus Natl Hist Nat, B, Bot 11:1–136
Chiang TY, Schaal BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250
Clapham AR, Jardine N (1993) Sagina. In: Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol. 1, 2nd edn. Cambridge University Press, Cambridge, pp 176–178
Coetzee JA (1964) Evidence for a considerable depression of the vegetation belts during the upper Pleistocene on the East African mountains. Nature 204:564–566. https://doi.org/10.1038/204564a0
Coetzee JA (1967) Pollen analytic studies in east and southern Africa. Palaeoecol Africa 3:1–146
Correa MN (1984) Flora patagonica, vol 4. INTA, Buenos Aires
Crow GE (1978) A taxonomic revision of Sagina (Caryophyllaceae) in North America. Rhodora 80: 1–91. https://www.jstor.org/stable/23311365
Crow GE (1979) The systematic significance of seed morphology in Sagina (Caryophyllaceae) under scanning electron microscopy. Brittonia 31:52–63. https://doi.org/10.2307/2806673
Crow GE (2005) Sagina. In: Flora of North America Editorial Committee (eds), Flora of North America, vol. 5. Oxford University Press, Oxford, pp 140–147
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature, Meth 9:772. https://doi.org/10.1038/nmeth.2109
Devos N, Barker NP, Nordenstam B, Mucina L (2010) A multi-locus phylogeny of Euryops (Asteraceae, Senecioneae) augments support for the “Cape to Cairo” hypothesis of floral migrations in Africa. Taxon 59:57–67. https://doi.org/10.1002/tax.591007
Dillenberger MS, Kadereit JW (2014) Maximum polyphyly: Multiple origins and delimitation with plesiomorphic characters require a new circumscription of Minuartia (Caryophyllaceae). Taxon 63:64–88. https://doi.org/10.12705/631.5
Dillenberger MS, Kadereit JW (2017) Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia s.l., Caryophyllaceae) revealed by genotyping-by-sequencing. Molec Phylogen Evol 112:23–35. https://doi.org/10.1016/j.ympev.2017.04.016
Drummond CS (2008) Diversification of Lupinus (Leguminosae) in the western New World: derived evolution of perennial life history and colonization of montane habitats. Molec Phylogen Evol 48:408–421. https://doi.org/10.1016/j.ympev.2008.03.009
Fiz O, Vargas P, Alarcón M, Aedo C, García JL, Aldasoro JJ (2008) Phylogeny and historical biogeography of Geraniaceae in relation to climate changes and pollination ecology. Syst Bot 33:326–342. https://doi.org/10.1600/036364408784571482
Frajman B, Eggens F, Oxelman B (2009) Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae)—a multigene phylogenetic approach with relative dating. Syst Biol 58:328–345. https://doi.org/10.1093/sysbio/syp030
Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the last glacial maximum. Proc Natl Acad Sci USA 106:3249–3253. https://doi.org/10.1073/pnas.0810635106
Fraser CI, Morrison AK, Hogg AM, Macaya EC, van Sebille E, Ryan PG, Padovan A, Jack C, Valdivia N, Waters JM (2018) Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat Clim Change 8:704–708
Galley C, Bytebier B, Bellstedt DU, Linder HP (2007) The Cape element in the Afrotemperate flora: from Cape to Cairo? Proc Roy Soc Ser B 274:535–543. https://doi.org/10.1098/rspb.2006.0046
GBIF (2021) GBIF occurrence download. GBIF. https://doi.org/10.15468/dl.jg2h4d
Greenberg AK, Donoghue MJ (2011) Molecular systematics and character evolution in Caryophyllaceae. Taxon 60:1637–1652. https://doi.org/10.1002/tax.606009
Hallam A (1994) An outline of phanerozoic biogeography. Oxford University Press, Oxford
Hänel C, Chown SL (1998) An introductory guide to the Marion and Prince Edward Island special nature reserves. Department of Environmental Affairs and Tourism, Pretoria
Harbaugh DT, Nepokroeff M, Rabeler RK, McNeill J, Zimmer EA, Wagner WL (2010) A new lineage-based tribal classification of the family Caryophyllaceae. Int J Pl Sci 171:185–198. https://doi.org/10.1086/648993
Hauman LA (1956) «Région Afroalpine» en phytogéographie centro-africaine. Webbia 11:467–469. https://doi.org/10.1080/00837792.1956.10669644
Hedberg O (1954) Taxonomic studies in afro-alpine Caryophyllaceae. Svensk Bot Tidskr 48:199–210
Hedberg O (1961) The phytogeographical position of the afroalpine flora. Recent Advances Bot 1:914–919
Hedberg O (1970) Evolution of the Afroalpine flora. Biotropica 2:16–23. https://doi.org/10.2307/2989783
Heenan PB, Mitchell AD, Koch M (2002) Molecular systematics of the New Zealand Pachycladon (Brassicaceae) complex: Generic circumscription and relationships to Arabidopsis sens. lat. and Arabis sens. lat. New Zealand J Bot 40:543–562. https://doi.org/10.1080/0028825X.2002.9512815
Hernández-Ledesma P, Berendsohn WG, Borsch T, von Mering S, Akhani H, Arias S, Castañeda-Noa I, Eggli U, Eriksson R, Flores-Olvera H, Fuentes-Bazán S, Kadereit G, Klak C, Korotkova N, Nyffeler R, Ocampo G, Ochoterena H, Oxelman B, Rabeler RK, Sanchez A, Schlumpberger BO, Uotila P (2015) A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia 45:281–384. https://doi.org/10.3372/wi.45.45301
Hoffmann A, Liberona F, Muñoz M, Watson J (1998) Plantas altoandinas en la flora silvestre de Chile. Ed. Fundación Claudio Gay, Santiago de Chile.
Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339. https://doi.org/10.1073/pnas.0601928103
Iamonico D (2016) A new name in Sagina, Sagina alexandrae (Caryophyllaceae). Phytotaxa 282:164–165. https://doi.org/10.11646/phytotaxa.282.2.8
Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molec Biol Evol 23:1602–1612. https://doi.org/10.1093/molbev/msl018
Jordan GJ, Macphail MK (2003) A middle-late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. Amer J Bot 90:761–768. https://doi.org/10.3732/ajb.90.5.761
Kadereit JW, Licht W, Uhink CH (2008) Asian relationships of the flora of the European Alps. Pl Ecol Diversity 1:171–179. https://doi.org/10.1080/17550870802328751
Kandziora M, Kadereit JW, Gehrke B (2017) Dual colonization of the Palaearctic from different regions in the Afrotropics by Senecio. J Biogeogr 44:147–157. https://doi.org/10.1111/jbi.12837
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molec Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
Larsen K (1998) Sagina rupestris sp. nov. (Caryophyllaceae) from New Guinea. Nordic J Bot 18:421–423. https://doi.org/10.1111/j.1756-1051.1998.tb01518.x
Legler BS, Dillenberger MS (2017) Two new species of Sabulina (Caryophyllaceae) from Washington State, U.S.A. PhytoKeys 81:79–102. https://doi.org/10.3897/phytokeys.81.13106
Lewis LR, Biersma EM, Carey SB, Holsinger K, McDaniel SF, Rozzi R, Goffinet B (2017) Resolving the northern hemisphere source region for the long-distance dispersal event that gave rise to the South American endemic dung moss Tetraplodon fuegianus. Amer J Bot 104:1651–1659. https://doi.org/10.3732/ajb.1700144
Lockhart PJ, McLenachan PA, Havell D, Glenny D, Huson D, Jensen U (2001) Phylogeny, radiation, and transoceanic dispersal of New Zealand alpine buttercups: molecular evidence under split decomposition. Ann Missouri Bot Gard 88:458–477. https://doi.org/10.2307/3298586
Lu D, Rabeler RK (2001) Sagina. In: Wu ZY, Raven P, Hong DY (eds) Flora of China, vol 6. Science Press & Missouri Botanical Garden Press, Beijing & St. Louis, pp 10–11
Luebert F, Weigend M (2014) Phylogenetic insights into Andean plant diversification. Frontiers Ecol Evol 2:1–17. https://doi.org/10.3389/fevo.2014.00027
Lydekker R (1896) A geographical history of mammals. Cambridge University Press, Cambridge
Mattfeld J (1940) 144 Eine neue Caryophyllaceae von Neuguinea. In: Diels L (ed) Beiträge zur Flora Papuasiens. XXV. Bot Jahrb Syst 70:468
Matzke NJ (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers Biogeogr 5:242–248. https://doi.org/10.21425/F5FBG19694
Matzke NJ (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol 63:951–970. https://doi.org/10.1093/sysbio/syu056
Merill ED, Perry LM (1949) Plantae Papuanae Archboldianae, XVIII. J Arnold Arbor 30: 39–63. https://www.jstor.org/stable/43781320
Meseguer AS, Aldasoro JJ, Sanmartín I (2013) Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John’s wort (Hypericum). Molec Phylogen Evol 67:379–403. https://doi.org/10.1016/j.ympev.2013.02.007
Meudt HM, Lockhart PJ, Bryant D (2009) Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evol Biol 9:111. https://doi.org/10.1186/1471-2148-9-111
Moore DM (1970) Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. Brit Antarc Surv Bull 23:63–80
Moore DM (1983) Flora of Tierra del Fuego. Anthony Nelson, Oswestry
Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee J-Y, Franzke A (2004) Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Amer J Bot 91:254–261. https://doi.org/10.3732/ajb.91.2.254
Nge FJ, Biffin E, Thiele KR, Waycott M (2021) Reticulate evolution, ancient chloroplast haplotypes, and rapid radiation of the Australian plant genus Adenanthos (Proteaceae). Frontiers Ecol Evol 8:616741. https://doi.org/10.3389/fevo.2020.616741
Pirie MD (2015) Phylogenies from concatenated data: Is the end nigh? Taxon 64:421–423. https://doi.org/10.12705/643.1
Pirie MD, Kandziora M, Nürk NM, Le Maitre NC, Mugrabi de Kuppler A, Gehrke B, Oliver EGH, Bellstedt DU (2019) Leaps and bounds: geographical and ecological distance constrained the colonisation of the Afrotemperate by Erica. BMC Evol Biol 19:222. https://doi.org/10.1186/s12862-019-1545-6
Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029. https://doi.org/10.1111/j.1365-2699.2008.01902.x
Pufal G (2010) The evolution and ecology of hygrochastic capsule dehiscence. PhD Thesis, Victoria University of Wellington, Wellington
Rambaut A, Drummond AJ (2015) TreeAnnotator. Computer program and documentation distributed by the author. Available at: http://beast.bio.ed.ac.uk, Accessed 20 July 2019
Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6, Computer program and documentation distributed by the author. Available at: http://beast.bio.ed.ac.uk/Tracer, Accessed 20 Jul 2019
Raven PH (1963) Amphitropical relationships in the floras of North and South America. Quart Rev Biol 38:151–177. https://doi.org/10.1086/403797
Raven PH (1972) Plant species disjunctions: a summary. Ann Missouri Bot Gard 59:234–246. https://doi.org/10.2307/2394756
Raven PH (1973) Evolution of subalpine and alpine plant groups in New Zealand. New Zealand J Bot 11:177–200. https://doi.org/10.1080/0028825X.1973.10430272
Ray N, Adams JM (2001) GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeol 11. https://doi.org/10.11141/ia.11.2
Ree RH, Sanmartín I (2018) Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J Biogeogr 45:741–749. https://doi.org/10.1111/jbi.13173
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
Sanmartín I, Wanntorp L, Winkworth RC (2007) West Wind Drift revisited: testing for directional dispersal in the southern hemisphere using event-based tree fitting. J Biogeogr 34:398–416. https://doi.org/10.1111/j.1365-2699.2006.01655.x
Simpson B (1975) Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1:273–294. https://doi.org/10.1017/S0094837300002530
Smissen RD, Garnock-Jones PJ, Chambers GK (2003) Phylogenetic analysis of ITS sequences suggests a Pliocene origin for the bipolar distribution of Scleranthus (Caryophyllaceae). Austral Syst Bot 16:301–315. https://doi.org/10.1071/SB01032
Smith JMB, Cleef AM (1988) Composition and origins of the world’s tropicalpine floras. J Biogeogr 15:631–645. https://doi.org/10.2307/2845441
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Takhtajan AL (1986) Floristic regions of the world. The University of California Press, Berkeley, California
Thiers B (2020, continuously updated) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden. Available at: http://sweetgum.nybg.org/science/ih/. Accessed 13 Aug 2020
Thorne RF (1972) Major disjunctions in the geographic ranges of seed plants. Quart Rev Biol 47:365–411. https://doi.org/10.1086/407399
Timaná ME (2018) Sagina diffusa (Hook.f.) Timaná, comb. nov. (Caryophyllaceae), a new combination for the flora of Île St. Paul (Southern Indian Ocean), with some historical notes. Adansonia 40:47–53. https://doi.org/10.5252/adansonia2018v40a3
Timaná ME, Lebouvier M, Rouhan G (2019) Sagina hookeri Timaná, sp. nov. (Caryophyllaceae), a new endemic species for the flora of Île Amsterdam (French Southern and Antarctic Lands). Adansonia 41:17–23. https://doi.org/10.5252/adansonia2019v41a2
Tison T-M, de Foucault B (2014) Flora gallica: flore de la France. Biotope Editions, Mèze
Valente LM, Vargas P (2013) Contrasting evolutionary hypotheses between two mediterranean-climate floristic hotspots: the Cape of southern Africa and the Mediterranean Basin. J Biogeogr 40:2032–2046. https://doi.org/10.1111/jbi.12156
van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26. https://doi.org/10.2307/3038066
van Royen P (1982) The alpine flora of New Guinea. J. Cramer, Vaduz
van Steenis CGGJ (1964) Plant geography of the mountain flora of Mt Kinabalu. Proc Roy Soc Ser B 161:7–38. https://doi.org/10.1098/rspb.1964.0072
van Steenis CGGJ (2006) The mountain flora of Java, 2nd edn. Brill, Leiden
van Zinderen Bakker EM (1964) A pollen diagram from equatorial Africa, Cherangani, Kenya. Geol & Mijnb 43:123–128
Villaverde T, Escudero M, Luceño M, Martín-Bravo S (2015) Long-distance dispersal during the middle-late Pleistocene explains the bipolar disjunction of Carex maritima (Cyperaceae). J Biogeogr 42:1820–1831. https://doi.org/10.1111/jbi.12559
von Hagen KB, Kadereit JW (2001) The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation. Organisms Diversity Evol 1:61–79. https://doi.org/10.1078/1439-6092-00005
von Hagen KB, Kadereit JW (2003) The diversification of Halenia (Gentianaceae): ecological opportunity versus key innovation. Evolution 57:2507–2518. https://doi.org/10.1111/j.0014-3820.2003.tb01495.x
Wagstaff SJ, Bayly MJ, Garnock-Jones PJ, Albach DC (2002) Classification, origin, and diversification of the New Zealand hebes (Scrophulariaceae). Ann Missouri Bot Gard 89:38–63. https://doi.org/10.2307/3298656
Wen J, Ickert-Bond SM (2009) Evolution of the Madrean-Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J Syst Evol 47:331–348. https://doi.org/10.1111/j.1759-6831.2009.00054.x
Winkworth RC, Robertson AW, Ehrendorfer F, Lockhart PJ (1999) The importance of dispersal and recent speciation in the flora of New Zealand. J Biogeogr 26: 1323–1325. https://www.jstor.org/stable/2656070
Winkworth RC, Grau J, Robertson AW, Lockhart PJ (2002a) The origins and evolution of the genus Myosotis L. (Boraginaceae). Molec Phylogen Evol 24:180–193. https://doi.org/10.1016/S1055-7903(02)00210-5
Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ (2002b) Plant dispersal N.E.W.S. from New Zealand. Trends Ecol Evol 17:514–520. https://doi.org/10.1016/S0169-5347(02)02590-9
Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ (2005) Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Organisms Diversity Evol 5:237–247. https://doi.org/10.1016/j.ode.2004.12.001
Yokoyama Y, Purcell A, Lambeck K, Johnston P (2001) Shore-line reconstruction around Australia during the last glacial maximum and late glacial stage. Quatern Int 83–85:9–18. https://doi.org/10.1016/S1040-6182(01)00028-3
Zhang J-J, Montgomery BR, Huang S-Q (2016) Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species. AoB PLANTS 8:plw032. https://doi.org/10.1093/aobpla/plw032
Acknowledgements
We would like to thank the AFROALP II team for collecting S. afroalpina at Mt. Kenya, and Berit Gehrke (Bergen, Norway) for sequencing and granting access to sequence data of the AFROALP II project. We thank Osvaldo J. Vidal for access to the HIP herbarium, and the curators and herbarium staff of AAS, ALA, BC, C, CANB, CIC, E, HIP, HO, JEPS, KHD, MJG, MICH, MONTU, OSC, P, RM, RNG, UC, W, WTU and WU for providing plant material for genetic analyses. Thanks to Bart van de Vijver for sampling two specimens in Île Amsterdam. We also would like to thank Marie Claire Veranso-Libalah (Mainz, Germany) for helping with the biogeographic analyses and Doris Franke (Mainz, Germany) for figure optimization. We acknowledge helpful comments by four anonymous reviewers of this and an earlier version of this paper.
Funding
EMB was funded by NERC‐CONICYT Grant NE/P003079/1 and Carlsberg Foundation Grant CF18‐0267.
Author information
Authors and Affiliations
Contributions
MSD and JWK designed the study. DMA, EMB and MSD generated the datasets and analysed the data. All authors wrote the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Handling editor: Mike Thiv.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
606_2021_1793_MOESM1_ESM.xlsx
Online Resource file 1. Table of plant material used in this study, including voucher information and GenBank accession numbers
606_2021_1793_MOESM2_ESM.pdf
Online Resource file 2. Detailed description of data analysis for Sagina afroalpina from genome skimming data obtained in the AFROALP II project
606_2021_1793_MOESM3_ESM.pdf
Online Resource file 3. Additional phylogenetic trees and fully displayed phylogenies obtained from analyses with RAxML, MrBayes and BEAST
606_2021_1793_MOESM4_ESM.xlsx
Online Resource file 4. Table with full results of best-fitting models (with and without +J) in BioGeoBEARS for both datasets and both analyses
Information on electronic supplementary material
Information on electronic supplementary material
Online Resource 1. Table of plant material used in this study, including voucher information and GenBank accession numbers.
Online Resource 2. Detailed description of data analysis for Sagina afroalpina from genome skimming data obtained in the AFROALP II project.
Online Resource 3. Additional phylogenetic trees and fully displayed phylogenies obtained from analyses with RAxML, MrBayes and BEAST.
Online Resource 4. Table with full results of best-fitting models (with and without +J) in BioGeoBEARS for both datasets and both analyses.
Rights and permissions
About this article
Cite this article
Alban, D.M., Biersma, E.M., Kadereit, J.W. et al. Colonization of the Southern Hemisphere by Sagina and Colobanthus (Caryophyllaceae). Plant Syst Evol 308, 1 (2022). https://doi.org/10.1007/s00606-021-01793-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00606-021-01793-w


