Skip to main content

Advertisement

Log in

Climate and coastal low-cloud dynamic in the hyperarid Atacama fog Desert and the geographic distribution of Tillandsia landbeckii (Bromeliaceae) dune ecosystems

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Despite the extensive area covered by the coastal Atacama fog Desert (18–32° S), there is a lack of understanding of its most notorious characteristics, including fog water potential, frequency of fog presence, spatial fog gradients or fog effect in ecosystems, such as Tillandsia fields. Here we discuss new meteorological data for the foggiest season (July–August–September, JAS) in 2018 and 2019. Our meteorological stations lie between 750 and 1211 m a. s. l. at two sites within the Cordillera de la Costa in the hyperarid Atacama (20° S): Cerro Oyarbide and Alto Patache. The data show steep spatial gradients together with rapid changes in the low atmosphere linked to the advection of contrasting coastal (humid and cold) and continental (dry and warm) air masses. One main implication is that fog presence and fog water yields tend to be negatively related to both distance to the coast and elevation. Strong afternoon SW winds advect moisture inland, which take the form of fog in only about 6% of the JAS at 1211 m a. s. l., but 65% at 750 m a. s. l. on the coastal cliff. Although sporadic, long lasting fog events embrace well-mixed marine boundary layer conditions and thick fog cloud between 750 and 1211 m a. s. l. These fog events are thought to be the main source of water for the Tillandsia ecosystems and relate their geographic distribution to the lowest fog water yields recorded. Future climate trends may leave fog-dependent Tillandsia even less exposed to the already infrequent fog resulting in rapid vegetation decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Modified from Lobos et al. (2018)

Similar content being viewed by others

References

  • ASF DAAC (2011) ALOS PALSAR_Radiometric_Terrain_Corrected_high_res; Available at: https://asf.alaska.edu/. Accessed 22 Sep 2020

  • Borthagaray AI, Fuentes MA, Marquet PA (2010) Vegetation pattern formation in a fog-dependent ecosystem. J Theor Biol 265:18–26. https://doi.org/10.1016/j.jtbi.2010.04.020

    Article  PubMed  Google Scholar 

  • Cereceda P, Larraín H, Osses P, Schemenauer RS, Farías M, Lagos M (2002) Radiation, advective and orographic fog in the Tarapacá region, Chile. Atmos Res 64:262–271. https://doi.org/10.1016/S0169-8095(02)00097-2

    Article  Google Scholar 

  • Cereceda P, Larraín H, Osses P, Farías M, Egaña I (2008a) The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos Res 87:312–323. https://doi.org/10.1016/j.atmosres.2007.11.012

    Article  Google Scholar 

  • Cereceda P, Larraín H, Osses P, Farías M, Egaña I (2008b) The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, chile. Atmos Res 87:301–311. https://doi.org/10.1016/j.atmosres.2007.11.011

    Article  Google Scholar 

  • del Río C, García JL, Osses P, Zanetta N, Lambert F, Rivera D, Siegmund A, Wolf N, Cereceda P, Larraín H, Lobos F (2018) Enso influence on coastal fog-water yield in the Atacama Desert, Chile. Aerosol Air Qual Res 18:127–144. https://doi.org/10.4209/aaqr.2017.01.0022

    Article  Google Scholar 

  • del Río C, Lobos F, Siegmund A, Tejos C, Osses P, Huaman Z, Meneses JP, García JL (2021a) GOFOS, ground optical fog observation system for monitoring the vertical stratocumulus-fog cloud dynamic in the coast of the Atacama Desert, Chile. J Hydrol 597:126190. https://doi.org/10.1016/j.jhydrol.2021.126190

    Article  Google Scholar 

  • del Río C, Lobos F, Latorre C, Koch MA, García JL, Osses P, Lambert F, Alfaro F, Siegmund A (2021b) Spatial distribution and interannual variability of coastal fog and low clouds cover in the hyper-arid Atacama Desert and implications for past and present Tillandsia landbeckii ecosystems. Pl Syst Evol (in press)

  • Duynkerke PG, Zhang HQ, Jonker PJ (1995) Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J Atmosp Sci 52:2763–2777

    Article  Google Scholar 

  • Farías M, Cereceda P, Osses P, Larraín H (2005) Comportamiento espacio temporal de la nube estratocúmulo, productora de niebla en la costa del desierto de Atacama (21° lat. S., 70° long W.) durante un mes de invierno y otro de verano. Invest Geogr 56:43–61

    Google Scholar 

  • Fuenzalida H (1950) Clima. In: Corporación de Fomento de la Producción (ed) Geografía Económica de Chile. Vol I. Imprenta Universitaria, Santiago de Chile, pp 199–281

  • Garreaud R, Barichivich J, Christie D, Maldonado A (2008) Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. J Geophys Res 113:G04011. https://doi.org/10.1029/2008JG000709

    Article  Google Scholar 

  • González AL, Fariña JM, Pinto R, Pérez C, Weathers KC, Armesto JJ, Marquet PA (2011) Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile. Oecologia 167:835–845. https://doi.org/10.1007/s00442-011-2032-y

    Article  PubMed  Google Scholar 

  • Houston J, Hartley AJ (2003) The central andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama desert. Int J Climatol 23:1453–1464. https://doi.org/10.1002/joc.938

  • Jaeschke A, Böhm C, Merklinger FF, Bernasconi SM, Reyers M, Kusch S, Rethemeyer J (2019) Variation in δ15N of fog-dependent Tillandsia ecosystems reflect water availability across climate gradients in the hyperarid Atacama Desert. Glob Planet Change 183:103029. https://doi.org/10.1016/j.gloplacha.2019.103029

    Article  Google Scholar 

  • Koch MA, Kleinpeter D, Auer E, Siegmund A, del Río C, Osses P, García JL, Marzol MV et al (2019) Living at the dry limits: ecological genetics of Tillandsia landbeckii lomas in the Chilean Atacama Desert. Pl Syst Evol 305:1041–1053. https://doi.org/10.1007/s00606-019-01623-0

    Article  CAS  Google Scholar 

  • Koch MA, Stock C, Kleinpeter D, del Río C, Osses P, Merklinger FF, Quandt D, Siegmund A (2020) Vegetation growth and landscape genetics of Tillandsia lomas at their dry limits in the Atacama Desert show fine-scale response to environmental parameters. Ecol Evol 10:13260–13274. https://doi.org/10.1002/ece3.6924

    Article  PubMed  PubMed Central  Google Scholar 

  • Latorre C, González AL, Quade J, Fariña JM, Pinto R, Marquet PA (2011) Establishment and formation of fog-dependent Tillandsia landbeckii dunes in the Atacama Desert: Evidence from radiocarbon and stable isotopes. J Geophys Res 116:G03033. https://doi.org/10.1029/2010JG001521

    Article  Google Scholar 

  • Lobos Roco F, Villa-Guerau de Arellano J, Pedruzo-Bagazgoitia X (2018) Characterizing the influence of the marine stratocumulus cloud on the land fog at the Atacama Desert. Atmos Res 214:109–120. https://doi.org/10.1016/j.atmosres.2018.07.009

    Article  Google Scholar 

  • Mikulane S, Siegmund A, Koch MA, del Río C, Osses P, García JL (2021) Semi-automatic detection of Tillandsia fields based on satellite data in the Tarapacá Region (Atacama Desert, Northern Chile). Pl Syst Evol 307(in review)

  • Muñoz RC, Garreaud RD (2005) Dynamics of the Low-level jet off the west coast of subtropical South America. Mon Weather Rev 133:3661–3677. https://doi.org/10.1175/MWR3074.1

    Article  Google Scholar 

  • Muñoz RC, Zamora RA, Rutllant JA (2011) The coastal boundary layer at the eastern margin of the southeast pacific (23.48°S, 70.48°W): cloudiness-conditioned climatology. J Clim 24:1013–1033. https://doi.org/10.1175/2010JCLI3714.1

    Article  Google Scholar 

  • Muñoz R, Quintana J, Falvey M, Rutllant J, Garreaud RD (2016) Coastal clouds at the eastern Margin of the southeast Pacific: climatology and trends. J Clim 29:4525–4542. https://doi.org/10.1175/JCLI-D-15-0757.1

    Article  Google Scholar 

  • Muñoz-Schick M, Pinto R, Mesa A, Moreira-Muñoz A (2001) "Oasis de Neblina" en los cerros costeros del sur de Iquique, región de Tarapacá, Chile, durante el evento El Niño 1997-1998. Revista Chilena de Historia Natural 74:389–405

  • Pinto R, Barria I, Marquet PA (2006) Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile. J Arid Environm 65:543–552. https://doi.org/10.1016/j.jaridenv.2005.08.015

    Article  Google Scholar 

  • Regalado CM, Ritter R (2016) The design of an optimal fog water collector: a theoretical analysis. Atmos Res 178–179:45–54. https://doi.org/10.1016/j.atmosres.2016.03.006

    Article  CAS  Google Scholar 

  • Rutllant JA, Fuenzalida H, Torres R, Figueroa D (1998) Interacción océano atmósfera tierra en la región de Antofagasta (Chile, 22°S): Experimento DICLIMA. Revista Chilena Hist Nat 71:405–427

    Google Scholar 

  • Rutllant JA, Fuenzalida H, Aceituno P (2003) Climate dynamics along the arid northern coast of Chile: The 1997–1998 dinámica del clima de la región de Antofagasta (diclima) experiment. J Geophys Res 108:D17. https://doi.org/10.1029/2002JD003357

    Article  Google Scholar 

  • Schween JH, Hoffmeister D, Loehnert U (2020) Filling the observational gap in the Atacama Desert with a new network of climate stations. Global Planet Change 184:103034. https://doi.org/10.1016/j.gloplacha.2019.103034

    Article  Google Scholar 

  • Schemenauer RS, Cereceda P (1994) A proposed standard fog collector for use in high elevation regions. J Appl Meteorol 33:1313–1322

    Article  Google Scholar 

  • Schulz N, Boisier JP, Aceituno P (2011a) Climate change along the arid coast of northern Chile. J Climatol 32:1803–1814. https://doi.org/10.1002/joc.2395

    Article  Google Scholar 

  • Schulz N, Aceituno P, Richter M (2011b) Phytogeographic divisions, climate change and plant dieback along the coastal desert of northern Chile. Erdkunde 65:169–187. https://doi.org/10.3112/erdkunde.2011.02.05

    Article  Google Scholar 

  • Voigt C, Klipsch S, Herwartz D, Chong G, Staubwasser M (2020) The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Global Planet Change 184:103077. https://doi.org/10.1016/j.gloplacha.2019.103077

    Article  Google Scholar 

  • Weischet W (1975) Las condiciones climáticas del desierto de Atacama como desierto extremo de la Tierra. Revista Geogr Norte Grande 1:363–373

    Google Scholar 

  • Westbeld A, Klemm O, Griessbaum F, Strater E, Larraín H, Osses P, Cereceda P (2009) Fog deposition to a Tillandsia carpet in the Atacama Desert. Ann Geophys 27:3571–3576. https://doi.org/10.5194/angeo-27-3571-2009

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Centro UC Desierto de Atacama, Estación Atacama UC_Alto Patache and Constanza Vargas for field support. This research was funded by the Vicerrectoría de Investigación Pontificia Universidad Católica de Chile and Agencia Nacional de Investigación y Desarrollo (ANID-Chile) grant ELAC2015/T01-0872. Station AP750, meteorological measurements at Iquique Airport and work of J.H. Schween were funded by the Collaborative Research Centre 1211 “Earth—Evolution at the Dry Limit” of the German Research Foundation (DFG SFB 1211, Projektnummer 268236062). Camilo del Río would like to thank the ANID/FONDECYT Iniciación grant No 11200789. We also thank two anonymous reviewers for valuable comments improving the quality of this paper.

Funding

Vicerrectoría de Investigación Pontificia Universidad Catolica de Chile. Agencia Nacional de Investigación y Desarrollo (ANID-Chile) international Grant ELAC2015/T01-0872, FONDECYT 11200789. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Collaborative Research Centre 1211 “Earth—Evolution at the Dry Limit” (SFB 1211, Projektnummer 268236062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Luis García.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Marcus Koch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to “Living at its dry limits – Tillandsiales in the Atacama Desert”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, JL., Lobos-Roco, F., Schween, J.H. et al. Climate and coastal low-cloud dynamic in the hyperarid Atacama fog Desert and the geographic distribution of Tillandsia landbeckii (Bromeliaceae) dune ecosystems. Plant Syst Evol 307, 57 (2021). https://doi.org/10.1007/s00606-021-01775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-021-01775-y

Keywords

Navigation