Skip to main content
Log in

Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The hornwort Anthoceros agrestis is emerging as a model system for the study of symbiotic interactions and carbon fixation processes. It is an annual species with a remarkably small and compact genome. Single accessions of the plant have been shown to be related to the cosmopolitan perennial hornwort Anthoceros punctatus. We provide the first detailed insight into the evolutionary history of the two species. Due to the rather conserved nature of organellar loci, we sequenced multiple accessions in the Anthoceros agrestisA. punctatus complex using three nuclear regions: the ribosomal spacer ITS2, and exon and intron regions from the single-copy coding genes rbcS and phytochrome. We used phylogenetic and dating analyses to uncover the relationships between these two taxa. Our analyses resolve a lineage of genetically near-uniform European A. agrestis accessions and two non-European A. agrestis lineages. In addition, the cosmopolitan species Anthoceros punctatus forms two lineages, one of mostly European accessions, and another from India. All studied European A. agrestis accessions have a single origin, radiated relatively recently (less than 1 million years ago), and are currently strictly associated with agroecosystem habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data set generated and analysed during the current study is available from GenBank and DRYAD [https://datadryad.org/stash/dataset/doi:10.5061/dryad.qnk98sfcb].

References

  • Ashmole P, Ashmole M (2000) St. Helena and Ascension Island: a natural history. Anthony Nelson, Oswestry

    Google Scholar 

  • Bainard JD, Villarreal A JC (2013) Genome size increases in recently diverged hornwort clades. Genome 56:431–435. https://doi.org/10.1139/gen-2013-0041

    Article  CAS  PubMed  Google Scholar 

  • Beike AK, von Stackelberg M, Schallenberg-Rüdinger M, Hanke ST, Follo M, Quandt D, McDaniel SF, Reski R, Tan BC, Rensing SA (2014) Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrella species complex. BMC Evol Biol 14:158. https://doi.org/10.1186/1471-2148-14-158

    Article  PubMed  PubMed Central  Google Scholar 

  • Biersma EM, Jackson JA, Hyvönen J, Koskinen S, Linse K, Griffiths H, Convey P (2017) Global biogeographic patterns in bipolar moss species. Roy Soc Open Sci 4:170147. https://doi.org/10.1098/rsos.170147

    Article  CAS  Google Scholar 

  • Bird Life International (2015) Why agriculture is the greatest threat to European biodiversity. Available at: https://www.birdlife.org/europe-and-central-asia/news/why-agriculture-greatest-threat-european-biodiversity. Accessed 23 Mar 2018

  • Bisang I (1992) Hornworts in Switzerland—endangered? Biol Conservation 59:145–149. https://doi.org/10.1016/0006-3207(92)90574-7

    Article  Google Scholar 

  • Bisang I (1995) On the phenology of Anthoceros agrestis [Anthocerotae, Anthocerotaceae], with special reference to Central Europe. Fragm Florist Geobot 40:513–518

    Google Scholar 

  • Bisang I (1998) The occurrence of hornwort populations (Anthocerotales, Anthocerotopsida) in the Swiss Plateau: the role of management, weather conditions and soil characteristics. Lindbergia 23:94–104

    Google Scholar 

  • Bisang I (2003) Population development, demographic structure, and life cycle aspects of two hornworts in Switzerland. Lindbergia 28:105–112

    Google Scholar 

  • Bisang I, Bergamini A, Lienhard L (2009) Environmental-friendly farming in Switzerland is not hornwort-friendly. Biol Conservation 142:2104–2113. https://doi.org/10.1016/j.biocon.2009.04.006

    Article  Google Scholar 

  • Blockeel TL, Bosanquet SDS, Preston P (eds) (2014) Atlas of British and Irish bryophytes, vol. 1. Pisces Publications and British Bryological Society, Newbury

    Google Scholar 

  • Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez AM, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood GU, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  • Cargill DC, Vella NGF, Sharma I, Miller JT (2013) Cryptic speciation and species diversity among Australian and New Zealand hornwort taxa of Megaceros (Dendrocerotaceae). Austral Syst Bot 26:356. https://doi.org/10.1071/sb13030

    Article  Google Scholar 

  • Chang C, Bowman JL, Meyerowitz EM (2016) Field guide to plant model systems. Cell 167:325–339. https://doi.org/10.1016/j.cell.2016.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Roy Soc London, Ser B, Biol Sci 268:25–29. https://doi.org/10.1098/rspb.2000.1325

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973. https://doi.org/10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duff RJ, Villarreal A JC, Cargill DC, Renzaglia KS (2007) Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110:214–243

    Article  Google Scholar 

  • Greilhuber J (2005) (iv) Bryophytes. In Genome size: a research discipline in development. Report on the International Botanical Congress official workshop held at the Institute of Botany, University of Vienna 22nd July 2005. Available at: https://data.kew.org/cvalues/vienna05_report.pdf. Accessed Feb 2019

  • Krutzsch W (1963) Atlas der Mittel- und Jungtertiaren dispersen Sporen- und Pollen-sowie der Mikroplanktonformen des nordlichen Mitteleuropas. Lieferung 2: Die Sporen der Anthocerotaceae und der Lycopodiaceae. Gustav Fischer Verlag, Jena and Berlin

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molec Biol Evol 29:1695–1701. https://doi.org/10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 153–176

    Chapter  Google Scholar 

  • Lewis LR, Rozzi R, Goffinet B (2014) Direct long-distance dispersal shapes a New World amphitropical disjunction in the dispersal-limited dung moss Tetraplodon (Bryopsida: Splachnaceae). J Biogeogr 41:2385–2395. https://doi.org/10.1111/jbi.12385

    Article  Google Scholar 

  • Li F-W, Villarreal A JC, Szövényi P (2017) Hornworts: an overlooked window into carbon-concentrating mechanisms. Trends Pl Sci 22:275–277. https://doi.org/10.1016/j.tplants.2017.02.002

    Article  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084. https://doi.org/10.1073/pnas.052125199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDaniel SF, Shaw AJ (2005) Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. Molec Ecol 14:1121–1132. https://doi.org/10.1111/j.1365-294x.2005.02484.x

    Article  CAS  Google Scholar 

  • McDaniel SF, von Stackelberg M, Richardt R, Quatrano RS, Reski R, Rensing SA (2010) The speciation history of the Physcomitrium-Physcomitrella species complex. Evolution 64:217–231. https://doi.org/10.1111/j.1558-5646.2009.00797.x

    Article  CAS  PubMed  Google Scholar 

  • Medina R, Johnson MG, Liu Y, Wickett NJ, Shaw AJ, Goffinet B (2019) Phylogenomic delineation of Physcomitrium (Bryophyta: Funariaceae) based on targeted sequencing of nuclear exons and their flanking regions rejects the retention of Physcomitrella, Physcomitridium and Aphanorrhegma. J Syst Evol 57:404–417. https://doi.org/10.1111/jse.12516

    Article  Google Scholar 

  • Meyer S, Wesche K, Krause B, Leuschner C (1950s) Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s—a cross-regional analysis. Diversity Distrib 19:1175–1187. https://doi.org/10.1111/ddi.12102

    Article  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2012) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458. https://doi.org/10.1073/pnas.1215985110

    Article  PubMed  PubMed Central  Google Scholar 

  • Paton JA (1979) Anthoceros agrestis, a new name for A. punctatus var. cavernosus sensu Prosk. 1958, non (Nees) Gottsche et al. J Bryol 10: 257–261. http://dx.doi.org/10.1179/jbr.1979.10.3.257

  • Porley R (2008) Arable bryophytes. A field guide to the mosses, liverworts, and hornworts of cultivated land in Britain and Ireland. Princeton University Press, Princeton

    Google Scholar 

  • Proskauer J (1957) Studies on Anthocerotales V. Phytomorphology 7:113–135

    Google Scholar 

  • Proskauer J (1958) Nachtrag zur Familie Anthocerotaceae. In: Müller K (ed) Die Lebermoose Europas, Rabenhorst’s Kryptogamen- Flora, 3rd edn. Akademische Verlagsgesellschaft, Leipzig, pp 1303–1319

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848. https://doi.org/10.1038/nature07895

    Article  CAS  PubMed  Google Scholar 

  • Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ (2018) The interrelationships of land plants and the nature of the ancestral embryophyte. Current Biol 28:733–745.e2. https://doi.org/10.1016/j.cub.2018.01.063

    Article  CAS  Google Scholar 

  • Rambaut A, Suchard M, Drummond A (2014) Tracer, version 1.6.0. Available at: https://tree.bio.ed.ac.uk/software/tracer/. Accessed Feb 2019

  • Reidsma P, Tekelenburg T, van den Berg M, Alkemade R (2006) Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric Ecosyst Environm 114:86–102. https://doi.org/10.1016/j.agee.2005.11.026

    Article  Google Scholar 

  • Renzaglia KS, Villarreal A JC, Piatkowski BT, Lucas JR, Merced A (2017) Hornwort stomata: Architecture and fate shared with 400-million-year-old fossil plants without leaves. Pl Physiol (Lancaster) 174:788–797. https://doi.org/10.1104/pp.17.00156

    Article  CAS  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenback JP (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnyder N, Bisang I, Caspari S, Hedenäs L, Hodgetts N, Kiebacher T, Kučera J, Ştefănuţ S, Vana J (2019) Anthoceros agrestis. The IUCN Red List of Threatened Species 2019. Available at: https://www.iucnredlist.org/species/83658361/87732544. Accessed Oct 2019

  • Schuster RM (1992) The Hepaticae and Anthocerotae of North America, vol. 6. Field Museum, Chicago

    Google Scholar 

  • Shaw AJ, Schmutz J, Devos N, Shu S, Carrell AA, Weston DJ (2016) The Sphagnum genome project. In: Rensing SA (ed) Genomes and Evolution of Charophytes, Bryophytes, Lycophytes and Ferns. Advances Bot Res 78:167–187. https://dx.doi.org/10.1016/bs.abr.2016.01.003

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swofford D (2002) PAUP* (Phylogenetic Analysis Using Parsimony) (*and Other Methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Szövényi P, Frangedakis E, Ricca M, Quandt D, Wicke S, Langdale JA (2015) Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC Pl Biol 15:98. https://doi.org/10.1186/s12870-015-0481-x

    Article  CAS  Google Scholar 

  • Szövényi, P (2016) The genome of the model species Anthoceros agrestis. In: Rensing SA (ed) Genomes and Evolution of Charophytes, Bryophytes, Lycophytes and Ferns. Advances Bot Res 78:189–211. https://dx.doi.org/10.1016/bs.abr.2015.12.001

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Villarreal A JC, Renzaglia KS (2015) The hornworts: important advancements in early land plant evolution. J Bryol 37:157–170. https://doi.org/10.1179/1743282015y.0000000016

    Article  Google Scholar 

  • Villarreal A JC, Cusimano N, Renner SS (2015) Biogeography and diversification rates in hornworts—the limitations of diversification modeling. Taxon 64:229–238

    Article  Google Scholar 

  • Villarreal A JC, Crandall-Stotler BJ, Hart ML, Long DG, Forrest LL (2016) Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytol 209:1734–1746. https://doi.org/10.1111/nph.13716

    Article  CAS  PubMed  Google Scholar 

  • Villarreal A JC, Duckett JG, Pressel S (2017) Morphology, ultrastructure and phylogenetic affinities of the single-island endemic Anthoceros cristatus Steph. (Ascension Island). J Bryol 39:226–234. https://doi.org/10.1080/03736687.2017.1302153

    Article  Google Scholar 

  • Warnow T (2010) The CIPRES Portals. Available at: https://www.phylo.org. Accessed Mar 2018

Download references

Acknowledgements

We would like to acknowledge the LIFE IUCN European Red List team and Norbert Schnyder for access to population size data for European Anthoceros agrestis from the Red List work (contract number LIFE14PREBE001). Thanks to Ilia Leitch for information about the Anthoceros agrestis genome size, and to the many colleagues who improved our sampling by sending us their Anthoceros collections. We are also grateful to the anonymous reviewers of a previous version of this manuscript, whose comments have hopefully led to some beneficial changes. This study formed the research thesis element of Tom Dawes’ MSc degree at the University of Edinburgh and Royal Botanic Garden, Edinburgh.

Funding

JCVA acknowledges support from the Earl S. Tupper Fellowship (Smithsonian Tropical Research Institute) and le Conseil de recherches en sciences naturelles et en genie du Canada RGPIN/05967-2016; TD and LLF acknowledge funding from the Royal Botanic Garden, Edinburgh, which is supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division. PS acknowledges funding from Swiss National Science Foundation grant nos 160004 and 131726, the Georges and Antoine Claraz Foundation, The Forschungskredit and the University Research Priority Program.

Author information

Authors and Affiliations

Authors

Contributions

LLF, JCVA and TD contributed to the study conception and design. Material preparation, data collection and analyses were performed by TD, JCVA and LLF. The first draft of the manuscript was written by LLF, JCVA and TD, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laura L. Forrest.

Additional information

Handling Editor: Andreas Tribsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Voucher table for the specimens included in the multigene analyses.

Online Resource 2. PCR and Sanger sequencing primers used in this study.

Online Resource 3. Basic statistics for the three loci.

Online Resource 4. Phylogeny produced using phytochrome (a) and rbcS (b) nucleotide sequence data, and annotated with ML bootstrap values and posterior probabilities as symbols on the trees.

Online Resource 5.Anthoceros divergence dates (in Ma) from the three calibration schemes (see text). (a) UCLN “relaxed” clock with a single calibration (root calibration) of 20 Ma and sd of 3; (b) UCLN “relaxed” clock with the root calibration and the island calibration on the node of the neoendemic A. cristatus, with a normal prior with a mean of 1 and sd of 0.25; (c) UCLN “relaxed” clock (Online Resource 4) with three calibrations (Online Resource 6): a normal root calibration, the A. cristatus calibration, and the crown age of the A. punctatus–agrestis–lamellatus–venosus group from the previous study applied to the ingroup, with a mean of 6 Ma and sd of 1.

Online Resource 6. (a) Uncorrelated lognormal (UCLN) relaxed clock dated tree produced using the root calibration scheme (normal prior, mean 20 Ma, sd 3) based on values in Villarreal A et al. 2015. (b). UCLN dated tree produced using a 2-calibration scheme, based on the root calibration and a crown age for A. punctatus–agrestis (mean 6 Ma, sd 1) based on values in Villarreal A et al. 2015. (c). UCLN dated tree produced using a 3-calibration scheme, based on the root calibration, a crown age for A. punctatus–agrestis and the age of Ascension Island as a proxy for A. cristatus (normal prior, mean 1 Ma, sd 0.25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawes, T.N., Villarreal A., J.C., Szövényi, P. et al. Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis. Plant Syst Evol 306, 49 (2020). https://doi.org/10.1007/s00606-020-01676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-020-01676-6

Keywords

Navigation