Skip to main content
Log in

Floral morphology and development in Tachigali (Caesalpinioideae, Leguminosae), a predominantly rainforest tree genus with contrasting flower architectures

Plant Systematics and Evolution Aims and scope Submit manuscript

Cite this article

Abstract

Comparative studies of floral development and morphology have largely contributed to the understanding of taxonomic classification, phylogenetic relationships and evolutionary trends across many angiosperm clades, particularly in the florally diverse family Leguminosae (alternatively Fabaceae). This study aimed to characterize the middle to late stages of floral development and morphological variation of the caesalpinioid genus Tachigali, an evolutionary radiation of predominantly neotropical rainforest trees. Floral buds and flowers of five representative species from Tachigali were analyzed under stereo microscopy, light microscopy and scanning electron microscopy to evaluate informative morphological and developmental characters. Although the genus displays relatively small flowers measuring up to 14 mm long, they are variable in terms of symmetry, structure and size, which have influenced the main taxonomic subdivisions among the species. Here, we show that the floral architecture of Tachigali involves a double whorl of stamens, anthers with dome-shaped connective extension and monosymmetrical hypanthium, owing to the unequal development of its wall at different stages of the floral ontogeny. Such developmental patterns are likely new diagnostic floral characters of Tachigali in the context of the early diverging caesalpinioid clades and reaffirm the circumscription of the genus in order to include the species previously classified within Sclerolobium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Baker TR, Pennington RT, Gloor SME, Laurance WF, Alvarez MAE, Araujo A, Arets EJMM, Aymard G, Oliveira AA, Amaral I, Arroyo L, Bonal D, Brienen RJW, Chave J, Dexter KG, Di Fiore A, Eler E, Feldpausch TR, Ferreira L, Lopez-Gonzalez G, van der Heijden G, Higuchi N, Honorio E, Huamantupa I, Killeen TJ, Laurance S, Leaño C, Lewis SL, Malhi Y, Marimon BS, Junior BHM, Mendoza AM, Neill D, Peñuela-Mora MC, Pitman N, Prieto A, Quesada CA, Ramírez F, Angulo HR, Rudas A, Ruschel AR, Salomão RP, Andrade AS, Silva JNM, Silveira M, Simon MF, Spironello W, ter Steege H, Terborgh J, Toledo M, Torres-Lezama A, Vasquez R, Vieira ICG, Vilanova E, Vos VA, Phillips OL (2014) Fast demographic traits promote high diversification rates of Amazonian tress. Eco Lett 17:527–536. https://doi.org/10.1111/ele.12252

    Article  Google Scholar 

  • Barreta-Kuipers T (1981) Wood anatomy of Leguminosae: its relevance to taxonomy. Part 2. In: Polhill RM, Raven PH (eds) Advances in Legume Systematics. Royal Botanic Gardens, Kew, pp 677–706

    Google Scholar 

  • Barros TC, Teixeira SP (2016) Revisited anatomy of anther glands in mimosoids (Leguminosae). Int J Pl Sci 177:18–36. https://doi.org/10.1086/683844

    Article  Google Scholar 

  • Bello MA, Rudall PJ, Hawkins JA (2012) Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales. Cladistics 28:393–421. https://doi.org/10.1111/j.1096-0031.2012.00392.x

    Article  Google Scholar 

  • BFG [Brazil Flora Group] (2018) Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69:1513–1527. https://doi.org/10.1590/2175-7860201869402

    Article  Google Scholar 

  • Bozzola JJ, Russel LD (1999) Electron Microscopy, 2nd edn. Jones and Barlett Publisher Toronto, Canada

    Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86:697–718. https://doi.org/10.1139/B08-058

    Article  CAS  Google Scholar 

  • Bruneau A, Klitgaard BB, Prenner G, Fougère-Danezan M, Tucker SC (2014) Floral evolution in the Detarieae (Leguminosae): Phylogenetic evidence for labile floral development in an early-branching legume lineage. Int J Pl Sci 175:393–417. https://doi.org/10.1086/675574

    Article  Google Scholar 

  • Cardoso D, Queiroz LP, Pennington T, Lima HC, Fonty E, Wojciechowski MF, Lavin M (2012a) Revisiting the phylogeny of papilionoid legumes: new insights from comprehensively sampled early-branching lineages. Amer J Bot 99:1991–2013. https://doi.org/10.3732/ajb.1200380

    Article  Google Scholar 

  • Cardoso D, Lima HC, Rodrigues RS, Queiroz LP, Pennington RT, Lavin M (2012b) The realignment of Acosmium sensu stricto with the dalbergioid clade (Leguminosae, Papilionoideae) reveals a proneness for independent evolution of radial floral symmetry among early branching papilionoid legumes. Taxon 61:1057–1073. https://doi.org/10.1002/tax.615011

    Article  Google Scholar 

  • Cardoso D, Pennington RT, Queiroz LP, Boatwright JS, Van Wyk E, Wojciechowski MF, Lavin M (2013a) Reconstructing the deep branching relationships of the papilionoid legumes. S African J Bot 89:58–75

    Article  CAS  Google Scholar 

  • Cardoso D, Queiroz LP, Lima HC, Suganuma E, van den Berg C, Lavin M (2013b) A molecular phylogeny of the vataireoid legumes underscores floral evolvability that is general to many early-branching papilionoid lineages. Amer J Bot 100:403–421. https://doi.org/10.1016/j.sajb.2013.05.001

    Article  CAS  Google Scholar 

  • Chomicki G, Ward PS, Renner SS (2015) Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plant in Neotropics. Proc Roy Soc B Bio Sci 282:1–9. https://doi.org/10.1098/rspb.2015.2200

    Article  CAS  Google Scholar 

  • Citerne HL, Möller M, Cronk QC (2000) Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Ann Bot (Oxford) 86:167–176. https://doi.org/10.1006/anbo.2000.1178

    Article  CAS  Google Scholar 

  • Citerne HL, Luo D, Pennington RT, Coen E, Cronk QC (2003) A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Pl Physiol 131:1042–1053. https://doi.org/10.1104/pp.102.016311

    Article  CAS  Google Scholar 

  • Citerne HL, Pennington RT, Cronk QC (2006) An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc Natl Acad Sci USA 103:12017–12020. https://doi.org/10.1073/pnas.0600986103

    Article  CAS  PubMed  Google Scholar 

  • De Paula OC, Assis LCS, De Craene LPR (2018) Unbuttoning the ancestral flower of angiosperms. Trends Pl Sci 23:551–554

    Article  Google Scholar 

  • Dwyer JD (1954) The tropical American genus Tachigalia Aubl. (Caesalpinioideae). Ann Missouri Bot Gard 41:223–260. https://doi.org/10.2307/2394605

    Article  Google Scholar 

  • Endress PK, Stumpf S (1991) The diversity of stamen structure in ‘Lower’ Rosidae (Rosales, Fabales, Proteales, Sapindales). Bot J Linn Soc 107:217–293. https://doi.org/10.1111/j.1095-8339.1991.tb00225a.x

    Article  Google Scholar 

  • Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci USA 103:4970–4975. https://doi.org/10.1073/pnas.0600681103

    Article  CAS  PubMed  Google Scholar 

  • Fonseca CR (1999) Amazonian ant-plant interactions and the nesting space limitation hypothesis. J Trop Ecol 15:807–825

    Article  Google Scholar 

  • Fonseca CR, Benson WW (2003) Ontogenetic succession in Amazonian ant trees. Oikos 102:407–412

    Article  Google Scholar 

  • Gabriel BL (1982) Biological electron microscopy, 1st edn. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Gagnon E, Hughes CE, Lewis GP, Bruneau A (2015) A new cryptic species in a new cryptic genus in the Caesalpinia group (Leguminosae) from the seasonally dry inter-Andean valleys of South America. Taxon 64:468–490. https://doi.org/10.12705/643.6

    Article  Google Scholar 

  • Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microscopy 132:81–85. https://doi.org/10.1111/j.1365-2818.1983.tb04711.x

    Article  CAS  Google Scholar 

  • Graham A, Barker G (1981) Palynology and tribal classification in the Caesalpinioideae. part 2. In: Polhill RM, Raven PH (eds) Advances in Legume systematics. Royal Botanic Gardens, Kew, pp 801–834

    Google Scholar 

  • Haston EM, Lewis GP, Hawkins JA (2005) A phylogenetic reappraisal of the Peltophorum group (Caesalpinieae: Leguminosae) based on the chloroplast trnL-F, rbcL and rps16 sequence data. Amer J Bot 92:1359–1371

    Article  CAS  Google Scholar 

  • Horner HT, Healy RA, Cervantes-Martinez T, Palmert RG (2003) Floral nectary fine structure and development in Glycine max L. (Fabaceae). Int J Pl Sci 164:675–6901. https://doi.org/10.3732/ajb.92.8.1359

    Article  Google Scholar 

  • Kochanovski FJ, Paulino JV, Teixeira SP, Azevedo AMG, Mansano VF (2018) Floral development of Hymenaea verrucosa: an ontogenetic approach to the unusual flower of Fabaceae subfamily Detarioideae. Bot J Linn Soc 20:1–13. https://doi.org/10.1093/botlinnean/boy006

    Article  Google Scholar 

  • Lavin M, Pennington TR, Klitgaard BB, Sprent JI, Lima HC, Gasson PE (2001) The dalbergioid legumes (Fabaceae): delimitation of a Pantropical monophyletic clade. Amer J Bot 88:503–533. https://doi.org/10.2307/2657116

    Article  CAS  Google Scholar 

  • Leite VG, Mansano VF, Teixeira SP (2014) Floral ontogeny in Dipterygeae (Fabaceae) reveals new insights into one of the earliest branching tribes in papilionoid legumes. Bot J Linn Soc 174:529–550. https://doi.org/10.1111/boj.12158

    Article  Google Scholar 

  • Leite VG, Teixeira SP, Mansano VF, Prenner G (2015) Floral development of the early-branching papilionoid legume Amburana cearensis (Leguminosae) reveals rare and novel characters. Int J Pl Sci 176:94–106. https://doi.org/10.1086/678468

    Article  Google Scholar 

  • Leme FM, Staedler YM, Schönenberger J, Teixeira SP (2018) Ontogeny and vascularization elucidate the atypical floral structure of Ampelocera glabra, a tropical species of Ulmaceae. Int J Pl Sci 179:461–476. https://doi.org/10.1086/697899

    Article  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world, 1st edn. Royal Botanic Gardens, Richmond

    Google Scholar 

  • LPWG [Legume Phylogeny Working Group] (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77. https://doi.org/10.12705/661.3

    Article  Google Scholar 

  • LPWG, Legume Phylogeny Working Group (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62:217–248. https://doi.org/10.5167/uzh-78167

    Article  Google Scholar 

  • Luckow M, Grimes J (1997) A survey of anther glands in the mimosoid legume tribes Parkieae and Mimoseae. Amer J Bot 84:285–297. https://doi.org/10.2307/2446002

    Article  CAS  Google Scholar 

  • Macedo TM, Barros CF, Lima HC, Costa CG (2014) Wood anatomy of seven species of Tachigali (Caesalpinioideae: Leguminosae). IAWA J 35:19–30. https://doi.org/10.1163/22941932-00000044

    Article  Google Scholar 

  • Manzanilla V, Bruneau A (2012) Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers. Molec Phylogenet Evo 65:149–162. https://doi.org/10.1016/j.ympev.2012.05.035

    Article  Google Scholar 

  • Marinho CR, Oliveira RB, Teixeira SP (2016) The uncommon cavitated secretory trichomes in Bauhinia s.s. (Fabaceae): the same roles in different organs. Bot J Linn Soc 180:104–122. https://doi.org/10.1111/boj.12354

    Article  Google Scholar 

  • Meira RMS, Francino DMT, Ascensão L (2014) Oleoresin trichomes of Chamaecrista dentata (Leguminosae): structure, function, and secretory products. Int J Pl Sci 175:336–345. https://doi.org/10.1086/673538

    Article  Google Scholar 

  • Novikoff AV, Jabbour F (2014) Floral anatomy of Delphinieae (Ranunculaceae): comparing flower organization and vascular patterns. Modern Phytomorphol 5:35–44. https://doi.org/10.5281/zenodo.161001

    Article  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    Article  Google Scholar 

  • Paiva EAS, Machado SR (2008) The floral nectary of Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae): structural aspects during floral development. Ann Bot (Oxford) 101:125–133. https://doi.org/10.1093/aob/mcm268

    Article  Google Scholar 

  • Paulino JV, Prenner G, Mansano VF, Teixeira SP (2014) Comparative development of rare cases of a polycarpellate gynoecium in an otherwise monocarpellate family, Leguminosae. Amer J Bot 101:572–586. https://doi.org/10.3732/ajb.1300355

    Article  Google Scholar 

  • Pennington RT, Klitgaard BB, Ireland H, Lavin M (2000) New insights into floral evolution of basal Papilionoideae from molecular phylogenies. In: Herendeen PS, Bruneau A (eds) Advances in Legume Systematics. Royal Botanic Gardens, Kew, pp 233–248

    Google Scholar 

  • Pipoly JJ III (1995) A new Tachigali (Fabaceae: Caesalpinioideae) from Western Amazonia. Sida 16:407–411

    Google Scholar 

  • Prenner G, Cardoso D (2017) Flower development of Goniorrhachis marginata reveals new insights into the evolution of the florally diverse detarioid legumes. Ann Bot (Oxford) 119:417–432. https://doi.org/10.1093/aob/mcw223

    Article  Google Scholar 

  • Prenner G, Klitgaard BB (2008) Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Amer J Bot 95:1349–1365. https://doi.org/10.3732/ajb.0800199

    Article  Google Scholar 

  • Prenner G, Cardoso D, Zartman CE, Queiroz LP (2015) Flowers of the early-branching papilionoid legume Petaladenium urceoliferum display unique morphological and ontogenetic features. Amer J Bot 102:1780–1793. https://doi.org/10.3732/ajb.1500348

    Article  CAS  Google Scholar 

  • Puri V (1951) The role of floral anatomy in the solution of morphological problems. Bot Rev 17:451–553. https://doi.org/10.1007/BF02882536

    Article  Google Scholar 

  • Silva LFG (2007) Taxonomia de Tachigali Aublet (Leguminosae, Caesalpinioideae) na Mata Atlântica. Dissertação de Mestrado. Escola Nacional de Botânica Tropical, Rio de Janeiro

  • Silva LFG, Lima HC (2007) Mudanças nomenclaturais no gênero Tachigali Aubl. (Leguminosae–Caesalpinioideae) no Brasil. Rodriguésia 58:397–401. https://doi.org/10.1590/2175-7860200758214

    Article  Google Scholar 

  • Silva AL, Trovó M, Coan AI (2016a) Floral development and vascularization help to explain merism evolution in Paepalanthus (Eriocaulaceae, Poales). PeerJ 2811:1–33. https://doi.org/10.7717/peerj.2811

    Article  Google Scholar 

  • Silva LFG, Cardoso LJT, Cardoso DBOS, Lima HC (2016b) Tachigali spathulipetala, A new threatened caesalpinioid tree species (Leguminosae) from Brazilian Atlantic Forest. Syst Bot 41:971–976. https://doi.org/10.1600/036364416X694080

    Article  Google Scholar 

  • Silva NF, Arruda RCO, Alves FM, Sartori ALB (2018) Leaflet anatomy of the Dipterygeae clade (Faboideae: Fabaceae): evolutionary implications and systematics. Bot J Linn Soc 187:99–117. https://doi.org/10.1093/botlinnean/boy009

    Article  Google Scholar 

  • Souza RCOS, De Toni KLG, Andreata RHP, Costa CG (2005) Anatomia e vascularização das flores estaminadas e pistiladas de Smilax fluminensis Steudel (Smilacaceae). Rodriguesia 56:107–121. https://doi.org/10.1590/2175-78602005568708

    Article  Google Scholar 

  • ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino JF, Monteagudo A, Núñez-Vargas P, Montero JC, Feldpausch TR, Coronado ENH, Killeen TJ, Mostacedo B, Vasquez R, Assis RL, Terborgh J, Wittmann F, Andrade A, Laurance WF, Laurance SGW, Marimon BS, Marimon BH Jr, Vieira ICG, Amaral IL, Brienen R, Castellanos H, Cárdenas-López D, Duivenvoorden JF, Mogollón HF, Matos FDA, Dávila N, García-Villacorta R, Diaz PRS, Costa F, Emilio T, Levis C, Schietti J, Souza P, Alonso A, Dallmeier F, Montoya AJD, Piedade MTF, Araujo-Murakami A, Arroyo L, Gribel R, Fine PVA, Peres CA, Toledo M, Aymard CGA, Baker TR, Cerón C, Engel J, Henkel TW, Maas P, Petronelli P, Stropp J, Zartman CE, Daly D, Neill D, Silveira M, Paredes MR, Chave J, Lima-Filho DA, Jørgensen PM, Fuentes A, Schöngart J, Valverde FC, Di Fiore A, Jimenez EM, Peñuela-Mora MC, Phillips JF, Rivas G, van Andel TR, von Hildebrand P, Hoffman B, Zent EL, Malhi Y, Prieto A, Rudas A, Ruschell AR, Silva N, Vos V, Zent S, Oliveira AA, Schutz AC, Gonzales T, Nascimento MT, Ramirez-Angulo H, Sierra R, Tirado M, Medina MNU, van der Heijden G, Vela CIA, Torre EV, Vriesendorp C, Wang O, Young KR, Baider C, Balslev H, Ferreira Mesones CI, Torres-Lezama A, Giraldo LEU, Zagt R, Alexiades MN, Hernandez L, Huamantupa-Chuquimaco I, Milliken W, Cuenca WP, Pauletto D, Sandoval EV, Gamarra LV, Dexter KG, Feeley K, Lopez-Gonzalez G, Silman MR (2013) Hyperdominance in the Amazonian tree flora. Science 342:325–335. https://doi.org/10.1126/science.1243092

    Article  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Pl Biol 4:75–85. https://doi.org/10.1016/S1369-5266(00)00139-4

    Article  CAS  Google Scholar 

  • Tucker SC (1991) The role of floral development in studies of legume evolution. Canad J Bot 70:692–700. https://doi.org/10.1139/b92-089

    Article  Google Scholar 

  • Tucker SC (1997) Floral evolution, development, and convergence: The hierarchical-significance hypothesis. Int J Pl Sci 158:143–146. https://doi.org/10.1086/297514

    Article  Google Scholar 

  • Tucker SC (2003) Floral development in legumes. Pl Physiol 131:911–926. https://doi.org/10.1104/pp.102.017459

    Article  CAS  Google Scholar 

  • van der Werff H (2008) A synopsis of the genus Tachigali (Leguminosae: Caesalpinioideae) in northern South America. Ann Missouri Bot Gard 95:618–660. https://doi.org/10.3417/2007159

    Article  Google Scholar 

  • Vargas W, Fortuna-Perez AP, Lewis GP, Piva TC, Vatanparast M, Machado SR (2018) Ultrastructure and secretion of glandular trichomes in species of subtribe Cajaninae Benth. (Leguminosae, Phaseoleae). Protoplasma 255:1–15. https://doi.org/10.1007/s00709-018-1307-0

    Article  Google Scholar 

  • Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J, Weng L, Sato S, Tabata S, Ambrose M, Rameau C, Feng X, Hu X, Da Luo (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci USA 105:10414–10419. https://doi.org/10.1073/pnas.0803291105

    Article  PubMed  Google Scholar 

  • Watson L, Dallwitzz MJ (1983) The genera of Leguminosae- Caesalpinioideae: anatomy, morphology, classification and keys, 1st edn. The Australian National University Research School of Biological Sciences, Canberra

    Google Scholar 

  • Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge

    Google Scholar 

  • Zhang W, Kramer EM, Davis CC (2010) Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proc Natl Acad Sci USA 107:6388–6393. https://doi.org/10.1073/pnas.0910155107

    Article  PubMed  Google Scholar 

  • Zimmerman E, Prenner G, Bruneau A (2013) Floral ontogeny in Dialiinae (Caesalpinioideae: Cassieae), a study in organ loss and instability. S African J Bot 89:188–209. https://doi.org/10.1016/j.sajb.2013.06.020

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of the first author’s MSc. thesis prepared for the postgraduate program of the Escola Nacional de Botânica Tropical of the Rio de Janeiro Botanical Garden and supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We thank Dr. Vidal Mansano for the contribution to the author’s MSc. thesis and the manuscript, Dr. David Martin for the review of the English grammar and two anonymous reviewers for the detailed comments and suggestions that greatly improved the manuscript. DC also thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Research Productivity Fellowship (process 308244/2018-4) and Prêmio CAPES de Teses (process 23038.009148/2013-19) and FAPESB (process APP0037/2016) for financially supporting his research on legume morphology and systematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. G. De Toni.

Additional information

Handling Editor: Peter K. Endress.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

The electronic supplementary material attached to this manuscript are high-quality images of the floral development from the five Tachigali species analyzed in this study, whorl by whorl, which allows us to better understand their floral architecture.

Online Resource 1. Floral buds at different developmental stages of Tachigali denudata. a Floral buds showing the sepals; b showing the petals with the sepals removed; c showing the androecium with the sepals and petals removed; d the gynoecium with the sepals, petals and androecium removed.

Online Resource 2. Floral buds at different developmental stages of Tachigali paratyensis. a Floral buds showing the sepals; b showing the petals with the sepals removed; c showing the androecium with the sepals and petals removed; d showing the gynoecium with the sepals, petals and androecium removed; arrowheads indicating the projection of the hypanthium wall.

Online Resource 3. Floral buds at different developmental stages of Tachigali beaurepairei. a Floral buds showing the sepals; b showing the petals with sepals removed; c showing the androecium with sepals and petals removed; d showing the gynoecium with sepals, petals and androecium removed; arrowheads indicating the projection of the hypanthium wall.

Online Resource 4. Floral buds at different developmental stages of Tachigali duckei. a Floral buds showing the sepals; b showing the petals with the sepals removed; c showing the androecium with the sepals and petals removed; d showing the gynoecium with the sepals, petals and androecium removed; arrowheads indicating the projection of the hypanthium wall.

Online Resource 5. Floral buds at different developmental stages of Tachigali spathulipetala. a Floral buds showing the sepals; b showing the petals with the sepals removed; c showing the androecium with the sepals and petals removed; d showing the gynoecium with the sepals, petals and androecium removed; arrowheads indicating the projection of the hypanthium wall.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casanova, J.M., Cardoso, D., Barros, C.F. et al. Floral morphology and development in Tachigali (Caesalpinioideae, Leguminosae), a predominantly rainforest tree genus with contrasting flower architectures. Plant Syst Evol 306, 17 (2020). https://doi.org/10.1007/s00606-020-01642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-020-01642-2

Keywords

Navigation