Arenas M (2015) Trends in substitution models of molecular evolution. Frontiers Genet 6:319. https://doi.org/10.3389/fgene.2015.00319
CAS
Article
Google Scholar
Barrett C, Specht C, Leebens-Mack J, Stevenson D, Zomlefer W, Davis J (2014) Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? Ann Bot (Oxford) 113:119–133. https://doi.org/10.1093/aob/mct264
Article
Google Scholar
Bernhardt N, Brassac J, Kilian B, Blattner F (2017) Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol Biol 17:141. https://doi.org/10.1186/s12862-017-0989-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Biswal D, Debnath M, Kumar S, Tandon P (2012) Phylogenetic reconstruction in the order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase K (matK) as a potential marker for DNA barcoding. BMC Bioinform 13:S26. https://doi.org/10.1186/1471-2105-13-S17-S26
CAS
Article
Google Scholar
Borsch T, Löhne C, Wiersema J (2008) Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon 57:1052–1081. https://doi.org/10.2307/27756765
Article
Google Scholar
Carbonell-Caballero J, Alonso R, Iba V, Terol J, Talon M, Dopazo J (2015) A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Molec Biol Evol 32:2015–2035. https://doi.org/10.1093/molbev/msv082
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen F, Liu X, Yu C, Chen Y, Tang H, Zhang L (2017) Water lilies as emerging models for Darwin’s abominable mystery. Hort Res 4:17051. https://doi.org/10.1038/hortres.2017.51
CAS
Article
Google Scholar
De Biasse M, Ryan J (2019) Phylotocol: promoting transparency and overcoming bias in phylogenetics. Syst Biol 68:672–678. https://doi.org/10.1093/sysbio/syy090
Article
Google Scholar
De Lima C, Dos Santos FdA, Giulietti A (2014) Morphological strategies of Cabomba (Cabombaceae), a genus of aquatic plants. Acta Bot Brasil 28:327–338. https://doi.org/10.1590/0102-33062014abb3439
Article
Google Scholar
Friedman W (2008) Hydatellaceae are water lilies with gymnospermous tendencies. Nature 453:94–97. https://doi.org/10.1038/nature06733
CAS
Article
PubMed
Google Scholar
Goncalves D, Simpson B, Ortiz E, Shimizu G, Jansen R (2019) Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Molec Phylogen Evol 138:219–232. https://doi.org/10.1016/j.ympev.2019.05.022
CAS
Article
Google Scholar
Goremykin V, Nikiforova S, Avalieri D, Indo M, Lockhart P (2015) The root of flowering plants and total evidence. Syst Biol 64:879–891. https://doi.org/10.1093/sysbio/syv028
CAS
Article
PubMed
Google Scholar
Graham S, Olmstead R, Barrett S (2002) Rooting phylogenetic trees with distant outgroups: a case study from the commelinoid monocots. Molec Biol Evol 19:1769–1781. https://doi.org/10.1093/oxfordjournals.molbev.a003999
CAS
Article
PubMed
Google Scholar
Greenberg J, White H, Carrier S, Scherle R (2009) A metadata best practice for a scientific data repository. J Libr Metadata 9:194–212. https://doi.org/10.1080/19386380903405090
Article
Google Scholar
Gruenstaeudl M, Nauheimer L, Borsch T (2017) Plastid genome structure and phylogenomics of Nymphaeales: conserved gene order and new insights into relationships. Pl Syst Evol 303:1251–1270. https://doi.org/10.1007/s00606-017-1436-5
CAS
Article
Google Scholar
Gruenstaeudl M, Gerschler N, Borsch T (2018) Bioinformatic workflows for generating complete plastid genome sequences—an example from Cabomba (Cabombaceae) in the context of the phylogenomic analysis of the water-lily clade. Life 8:25. https://doi.org/10.3390/life8030025
CAS
Article
PubMed Central
Google Scholar
He D, Gichira A, Li Z, Nzei J, Guo Y, Wang Q, Chen J (2018) Intergeneric relationships within the early-diverging angiosperm family Nymphaeaceae based on chloroplast phylogenomics. Int J Molec Sci 19:3780. https://doi.org/10.3390/ijms19123780
CAS
Article
Google Scholar
Hurvich C, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297
Article
Google Scholar
Iles W, Rudall P, Sokoloff D, Remizowa M, Macfarlane T, Logacheva M, Graham S (2012) Molecular phylogenetics of Hydatellaceae (Nymphaeales): sexual-system homoplasy and a new sectional classification. Amer J Bot 99:663–676. https://doi.org/10.3732/ajb.1100524
Article
Google Scholar
Kainer D, Lanfear R (2015) The effects of partitioning on phylogenetic inference. Molec Biol Evol 32:1611–1627. https://doi.org/10.1093/molbev/msv026
CAS
Article
PubMed
Google Scholar
Katoh K, Standley D (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molec Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
CAS
Article
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Article
PubMed
PubMed Central
Google Scholar
Li B, Zheng Y (2018) Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Sci Rep 8:9285. https://doi.org/10.1038/s41598-018-27453-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Y, Yang Y, Yu L, Du X, Ren G (2018) Plastomes of nine hornbeams and phylogenetic implications. Ecol Evol 8:8770–8778. https://doi.org/10.1002/ece3.4414
CAS
Article
PubMed
PubMed Central
Google Scholar
Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, Gitzendanner M, Fritsch P, Cai J, Luo Y, Wang H, van der Bank M, Zhang SD, Wang QF, Wang J, Zhang ZR, Fu CN, Yang J, Hollingsworth P, Chase M, Soltis D, Soltis P, Li DZ (2019) Origin of angiosperms and the puzzle of the jurassic gap. Nat Pl 5:461–470. https://doi.org/10.1038/s41477-019-0421-0
Article
Google Scholar
Löhne C, Borsch T, Wiersema J (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163. https://doi.org/10.1111/j.1095-8339.2007.00659.x
Article
Google Scholar
Löhne C, Wiersema J, Borsch T (2009) The unusual Ondinea, actually just another Australian water-lily of Nymphaea subg. Anecphya (Nymphaeaceae). Willdenowia 39:55–58. https://doi.org/10.3372/wi.39.39104
Article
Google Scholar
Ma P, Zhang Y, Zeng C, Guo Z, Li D (2014) Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst Biol 63:933–950. https://doi.org/10.1093/sysbio/syu054
Article
PubMed
Google Scholar
Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317. https://doi.org/10.1111/j.1469-8137.2010.03195.x
CAS
Article
PubMed
Google Scholar
Paradis E, Schliep K (2018) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528. https://doi.org/10.1093/bioinformatics/bty633
Article
Google Scholar
Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84. https://doi.org/10.1186/1741-7007-7-84
CAS
Article
PubMed
PubMed Central
Google Scholar
Piel W, Donoghue M, Sanderson M (2002) TreeBASE: a database of phylogenetic knowledge. In: Shimura J, Wilson K, Gordon D (eds) To the interoperable ’Catalog of Life’ with partners—species 2000 Asia Oceania. In: Proceedings of 2nd international workshop of species 2000, National Institute for Environmental Studies, Ibaraki, Japan, pp 41–47. https://www.nies.go.jp/kanko/kenkyu/pdf/r-171-2002.pdf
R Development Core Team (2013) R: a language and environment for statistical computing. Computing, R Foundation for Statistical, Vienna. Available at: http://www.r-project.org. Accessed 4 Aug 2019
Roche D, Kruuk L, Lanfear R, Binning S (2015) Public data archiving in ecology and evolution: how well are we doing? PLoS Biol 13:e1002295. https://doi.org/10.1371/journal.pbio.1002295
CAS
Article
PubMed
PubMed Central
Google Scholar
Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. https://doi.org/10.1093/bioinformatics/btg180
CAS
Article
PubMed
Google Scholar
Rota J, Malm T, Chazot N, Pena C, Wahlberg N (2018) A simple method for data partitioning based on relative evolutionary rates. PeerJ 6:e5498. https://doi.org/10.7717/peerj.5498
Article
PubMed
PubMed Central
Google Scholar
Ruhfel B, Gitzendanner M, Soltis P, Soltis D, Burleigh J (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. https://doi.org/10.1186/1471-2148-14-23
Article
PubMed
PubMed Central
Google Scholar
Ruhlman T, Zhang J, Blazier J, Sabir J, Jansen R (2017) Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure. Amer J Bot 104:559–572. https://doi.org/10.3732/ajb.1600453
CAS
Article
Google Scholar
Saarela J, Rai H, Doyle J, Endress P, Mathews S, Marchant A, Briggs B, Graham S (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:5–8. https://doi.org/10.1038/nature05612
CAS
Article
Google Scholar
Saarela J, Burke S, Wysocki W, Barrett M, Clark L, Craine J, Peterson P, Soreng R, Vorontsova M, Duvall M (2018) A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 6:e4299. https://doi.org/10.7717/peerj.4299
CAS
Article
PubMed
PubMed Central
Google Scholar
Schliep K (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706
CAS
Article
PubMed
Google Scholar
Shen XX, Hittinger C, Rokas A (2017) Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol 1:0126. https://doi.org/10.1038/s41559-017-0126
Article
Google Scholar
Sokoloff D, Remizowa M, Macfarlane T, Rudall P (2008) Classification of the early-divergent angiosperm family Hydatellaceae: one genus instead of two, four new species and sexual dimorphism in dioecious taxa. Taxon 57:179–200. https://doi.org/10.2307/25065959
Article
Google Scholar
Sokoloff D, Marques I, Macfarlane T, Remizowa M, Lam V, Pellicer J, Hidalgo O, Graham S (2019) Cryptic species in an ancient flowering-plant lineage (Hydatellaceae, Nymphaeales) revealed by molecular and micromorphological data. Taxon 68:1–19. https://doi.org/10.1002/tax.12026
Article
Google Scholar
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
CAS
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. https://doi.org/10.1080/10635150802429642
Article
PubMed
Google Scholar
Sullivan A, Schiffthaler B, Thompson S, Street N, Wang X (2017) Interspecific plastome recombination reflects ancient reticulate evolution in Picea (Pinaceae). Molec Biol Evol 34:1689–1701. https://doi.org/10.1093/molbev/msx111
CAS
Article
PubMed
PubMed Central
Google Scholar
Tarrio R, Rodriguez-Trelles F, Ayala F (2000) Tree rooting with outgroups when they differ in their nucleotide composition from the ingroup: the Drosophila saltans and willistoni groups, a case study. Molec Phylogen Evol 16:344–349. https://doi.org/10.1006/mpev.2000.0813
CAS
Article
Google Scholar
Taylor M, Cooper R, Schneider E, Osborn J (2015) Pollen structure and development in Nymphaeales: insights into character evolution in an ancient angiosperm lineage. Amer J Bot 102:1685–1702. https://doi.org/10.3732/ajb.1500249
Article
Google Scholar
Vialette-Guiraud A, Alaux M, Legeai F, Finet C, Chambrier P, Brown S, Chauvet A, Magdalena C, Rudall P, Scutt C (2011) Cabomba as a model for studies of early angiosperm evolution. Ann Bot (Oxford) 108:589–598. https://doi.org/10.1093/aob/mcr088
Article
Google Scholar
Vines T, Andrew R, Bock D, Franklin M, Gilbert K, Kane N, Moore JS, Moyers B, Renaut S, Rennison D, Veen T, Yeaman S (2013) Mandated data archiving greatly improves access to research data. FASEB J 27:1–15. https://doi.org/10.1096/fj.12-218164
CAS
Article
Google Scholar
Vision T (2010) Open data and the social contract of scientific publishing. BioScience 60:330–331. https://doi.org/10.1525/bio.2010.60.5.2
Article
Google Scholar
Whitlock M, McPeek M, Rausher M, Rieseberg L, Moore A (2010) Data archiving. Amer Naturalist 175:2–3. https://doi.org/10.1086/650340
Article
Google Scholar
Williams T, Heaps S, Cherlin S, Nye T, Boys R, Embley T (2015) New substitution models for rooting phylogenetic trees. Philos Trans Roy Soc London B Biol Sci 370:20140336
Article
CAS
Google Scholar
Wolfe A, Randle C (2004) Recombination, heteroplasmy, haplotype polymorphism, and paralogy in plastid genes: implications for plant molecular systematics. Syst Bot 29:1011–1020. https://doi.org/10.1600/0363644042451008
Article
Google Scholar
Yang X, Tuskan G, Tschaplinski T, Cheng M (2007) Third-codon transversion rate-based Nymphaea basal angiosperm phylogeny—concordance with developmental evidence. Nat Precedings. https://doi.org/10.1038/npre.2007.320.1
Article
Google Scholar
Yoo MJ, Soltis P, Soltis D (2010) Expression of floral MADS-box genes in two divergent water lilies: Nymphaeales and Nelumbo. Int J Pl Sci 171:121–146. https://doi.org/10.1086/648986
CAS
Article
Google Scholar
Zhang Q, Sodmergen (2010) Why does biparental plastid inheritance revive in angiosperms? J Pl Res 123:201–206. https://doi.org/10.1007/s10265-009-0291-z
Article
Google Scholar
Zhong B, Betancur-R R (2017) Expanded taxonomic sampling coupled with gene genealogy interrogation provides unambiguous resolution for the evolutionary root of angiosperms. Genome Biol Evol 9:3154–3161. https://doi.org/10.1093/gbe/evx233
CAS
Article
PubMed Central
Google Scholar
Zhu A, Fan W, Adams R, Mower J (2018) Phylogenomic evidence for ancient recombination between plastid genomes of the Cupressus–Juniperus–Xanthocyparis complex (Cupressaceae). BMC Evol Biol 18:137. https://doi.org/10.1186/s12862-018-1258-2
CAS
Article
PubMed
PubMed Central
Google Scholar