Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 6, pp 415–429 | Cite as

Genetic characterization of tertiary relict endemic Phoenix theophrasti populations in Turkey and phylogenetic relations of the species with other palm species revealed by SSR markers

  • Nilden Vardareli
  • Taylan Doğaroğlu
  • Ersin Doğaç
  • Vatan Taşkın
  • Belgin Göçmen TaşkınEmail author
Original Article

Abstract

Phoenix theophrasti is one of the few tree species tertiary relict endemic to the eastern Mediterranean, and it is one of the two palm species native to continental Europe. It has local populations both in Crete-Greece and in southwest Turkey. Like most of the relict endemics, it has a restricted distribution and it is at risk of extinction. The primary goal of this study was the genetic characterization of Turkish P. theophrasti populations by using SSR markers. The secondary goal was to detect the phylogenetic relations of P. theophrasti with nine different palm species which are P. dactylifera, P. reclinata, P. rupicola, P. roebelenii, P. canariensis, P. loureiri, P. acaulis, P. sylvestris from Phoenix genus and Chamaerops humilis from Chamaerops genus by the same markers. Chamaerops humilis was included in the study as the second natural palm species of the Europe. The genetic differentiation coefficient (FST) was found as 0.34, and the level of gene flow (Nm) within a generation among populations was found as 0.49. In general, excess of homozygotes relative to that expected with random mating was detected in the populations. The lowest differentiation of P. theophrasti was from P. dactylifera (FST = 0.1932), and the highest differentiation of P. theophrasti was from C. humilis (FST= 0.4261). We propose that P. theophrasti must urgently be included in the Red List of IUCN under the critically endangered (CR) category. Phylogenetic relations determined among the palm species indicated the necessity of re-evaluation of the taxonomy of palms.

Keywords

Genetic variation Palm species Phoenix theophrasti SSR markers Turkey 

Notes

Acknowledgement

We are grateful to Nedim TÜZÜN for his help in plant material collection in the Datça Peninsula. We also thank Dr. Ragıp ESENER from Köyceğiz-Palm Center for providing samples of palm species used in the study. This study was financially supported by Muğla Sıtkı Koçman University Scientific Research Fund (Project Number: MUBAP-2011/1).

Author contributions

BGT designed the study, TD, VT and BGT collected the plant material, NV performed SSR analysis, ED and VT performed the analysis of data, and BGT wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human or animal subject.

Supplementary material

606_2019_1580_MOESM1_ESM.pdf (545 kb)
Supplementary material 1 (PDF 545 kb)
606_2019_1580_MOESM2_ESM.pdf (443 kb)
Supplementary material 2 (PDF 443 kb)
606_2019_1580_MOESM3_ESM.pdf (349 kb)
Supplementary material 3 (PDF 349 kb)
606_2019_1580_MOESM4_ESM.pdf (345 kb)
Supplementary material 4 (PDF 345 kb)
606_2019_1580_MOESM5_ESM.pdf (427 kb)
Supplementary material 5 (PDF 426 kb)
606_2019_1580_MOESM6_ESM.pdf (338 kb)
Supplementary material 6 (PDF 337 kb)
606_2019_1580_MOESM7_ESM.pdf (350 kb)
Supplementary material 7 (PDF 350 kb)
606_2019_1580_MOESM8_ESM.pdf (351 kb)
Supplementary material 8 (PDF 350 kb)
606_2019_1580_MOESM9_ESM.pdf (347 kb)
Supplementary material 9 (PDF 347 kb)
606_2019_1580_MOESM10_ESM.pdf (347 kb)
Supplementary material 10 (PDF 346 kb)
606_2019_1580_MOESM11_ESM.pdf (354 kb)
Supplementary material 11 (PDF 353 kb)
606_2019_1580_MOESM12_ESM.pdf (351 kb)
Supplementary material 12 (PDF 350 kb)

References

  1. Affre L, Thompson JD, Debussche M (1997) Genetic structure of continental and island populations of the Mediterranean endemic Cyclamen balearicum (Primulaceae). Amer J Bot 84:437–451.  https://doi.org/10.2307/2446019 CrossRefGoogle Scholar
  2. Ahmed AIS, Siliman WS, El-Agib E (2001) Prospectives for date palm and dates research. In: Paper presented at a workshop on date palm culture and dates production in Republic of Sudan, Khartoum, Sudan, 22–17 August 2001. Date Palm Research and Development Network, KhartoumGoogle Scholar
  3. Akkak A, Scariot V, Marinoni DT, Boccani P, Beltramo C (2009) Development and evaluation of microsatellite markers in Phoenix dactylifera L. and their transferability to other Phoenix species. Biol Pl 53:164–166.  https://doi.org/10.1007/s10535-009-0026-y CrossRefGoogle Scholar
  4. Al-Khalifah NS, Askari E (2003) Molecular phylogeny of date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia by DNA fingerprinting. Theor Appl Genet 107:1266–1270.  https://doi.org/10.1007/s00122-003-1369-y CrossRefGoogle Scholar
  5. Barrow S (1998) A revision of Phoenix L. (Palmae: Coryphoideae). Kew Bull 53:513–575CrossRefGoogle Scholar
  6. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX (ver. 4.02): logiciel sous Windows TM pour la genetique des populations, Laboratoire Genome, Populations, Interactions; CNRS UMR 5000; Universite Montpellier II, Montpellier (France). http://kimura.univ-montp2.fr/genetix/
  7. Billotte N, Marseillac N, Brottier P, Noyer JL, Moreau C, Couvreur T, Chevallier MH, Pintaud JC, Risterucci M (2004) Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): characterization and utility across the genus Phoenix and in other palm genera. Molec Ecol Notes 4:256–258.  https://doi.org/10.1111/j.1471-8286.2004.00634.x CrossRefGoogle Scholar
  8. Boydak M (1985) The distribution of Phoenix theophrasti in the Datça Peninsula, Turkey. Biol Conservation 32:129–135.  https://doi.org/10.1016/0006-3207(85)90081-3 CrossRefGoogle Scholar
  9. Boydak M (1986) Turkiye, Kumluca-Karaöz’de saptanan yeni bir doğal palmiye (Phoenix theophrasti) yayılışı. Istanbul Üniv Orman Fak Derg Ser A 36:1–13Google Scholar
  10. Boydak M (1987) A new occurence of Phoenix theophrasti in Kumluca-Karaöz, Turkey. Principes 31:89–95Google Scholar
  11. Boydak M, Barrow SA (1995) New locality for Phoenix in Turkey: Gölköy-Bodrum. Principes 39:117–122Google Scholar
  12. Boydak M, Yaka M (1983) Datça hurması (Phoenix theophrasti W. Greuter) ve Datça Yarımadası’nda saptanan doğal yayılışı. Istanbul Üniv Orman Fak Derg Ser A 33:73–92Google Scholar
  13. Chen SY, Ma X, Zhang XQ et al (2009) Genetic variation and geographical divergence in Elymus nutans Griseb. (Poaceae: Triticeae) from West China. Biochem Syst Ecol 37:716–722.  https://doi.org/10.1016/j.bse.2009.12.005 CrossRefGoogle Scholar
  14. Citrus and Date Crop Germplasm Committee (2004). Citrus and Date Germplasm: Crop Vulnerability, Germplasm Activities, Germplasm Needs. USDA. Available at: http://www.ars.usda.gov/sp2UserFiles/Place/53103000/Crop_Vulnerability_2004.pdf
  15. Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Amer Naturalist 152:204–224CrossRefGoogle Scholar
  16. Condit R, Hubbell SP (1991) Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34:66–71.  https://doi.org/10.1139/g91-011 CrossRefGoogle Scholar
  17. Connor SE (2009) Human impact-the last nail in the coffin for ancient plants. J Biogeogr 36:485–486.  https://doi.org/10.1111/j.1365-2699.2008.02084.x CrossRefGoogle Scholar
  18. Critchfield WB (1984) Impact of the Pleistocene on the genetic structure of North American conifers. In: Tanner RM (ed) Proceedings of the Eighth North American Forest Biology Workshop, 30 July–1 August, Logan, Utah. Utah State University, Logan, pp 70–118Google Scholar
  19. Cruse-Sanders JM, Hamrick JL (2004) Genetic diversity in harvested and protected populations of wild American ginseng, Panax quinquefolius L. (Araliaceae). Amer J Bot 91:540–548.  https://doi.org/10.3732/ajb.91.4.540 CrossRefGoogle Scholar
  20. Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Molec Ecol 1:233–240.  https://doi.org/10.1111/j.1365-294X.1992.tb00182.x CrossRefGoogle Scholar
  21. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679CrossRefGoogle Scholar
  22. Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. In: Peters RL, Lovejoy TE (eds) Global warming and biological diversity. Yale University Press, New Haven, pp 297–308Google Scholar
  23. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  24. Earl DA, von Holt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genet Resources 4:359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  25. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Syst 24:217–242.  https://doi.org/10.1146/annurev.es.24.110193.001245 CrossRefGoogle Scholar
  26. Elshibli S, Korpelainen H (2008) Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan. Genetica 134:251–260.  https://doi.org/10.1007/s10709-007-9232-8 CrossRefGoogle Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  28. Excoffier L, Laval G, Schneider S (2009) ARLEQIN (ver. 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50Google Scholar
  29. Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New YorkGoogle Scholar
  30. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  31. FAO (1998) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  32. FAO (2010) Forest and climate change in the near east region. Forest and climate change working paper 9. FAO, RomeGoogle Scholar
  33. Fischer M, Matteis D (1998) Effects of population size on performance in the rare plant Gentianella germanica. J Ecol 86:195–204.  https://doi.org/10.1046/j.1365-2745.1998.00246.x CrossRefGoogle Scholar
  34. Frankel OH, Bennett E (1970) Genetic resources in plants—their exploration and conservation. IBP Handbook No. 11. Blackwell Scientific Publications, OxfordGoogle Scholar
  35. Garfi G, Carimi F, Pasta S, Rühl J, Trigila S (2011) Additional insights on the ecology of the relic tree Zelkova sicula di Pasquale, Garfi et Quézel (Ulmaceae) after the finding of a new population. Flora 206:407–417.  https://doi.org/10.1016/j.flora.2010.11.004 CrossRefGoogle Scholar
  36. Garrido JL, Fenu G, Mattana E, Bacchetta G (2012) Spatial genetic structure of Aquilegia taxa endemic to the island of Sardinia. Ann Bot (Oxford) 109:953–964.  https://doi.org/10.1093/aob/mcs011 CrossRefGoogle Scholar
  37. Godt MJW, Hamrick JL (2001) Genetic diversity in rare southeastern plants. Nat Areas J 21:61–70Google Scholar
  38. Godt MJW, Johnson BR, Hamrick JL (1996) Genetic diversity and population size in four rare southern Appalachian plant species. Conservation Biol 10:796–805.  https://doi.org/10.1046/j.1523-1739.1996.10030796.x CrossRefGoogle Scholar
  39. González-Pérez MA, Caujapé-Castell J, Sosa PA (2004) Allozyme variation and structure of the Canarian endemic palm tree Phoenix canariensis (Arecaceae): implications for conservation. Heredity 93:307–315CrossRefGoogle Scholar
  40. Goto S, Tsuda Y, Koike Y (2009) Effects of landscape and demographic history on genetic variation in Picea glehnii at the regional scale. Ecol Res 24:1267–1277.  https://doi.org/10.1007/s11284-009-0611-8 CrossRefGoogle Scholar
  41. Greuter W (1967) Beitrage zur Flora der Südagais 8-9. Buahinia 3:243–254Google Scholar
  42. Greuter W (1968) Le dattier de Théophraste, spécialité crétoise. Mus Genève 2:14–16Google Scholar
  43. Gros-Balthazard M (2013) Hybridization in the genus Phoenix: a review. Emirates J Food Agric 25:831–842.  https://doi.org/10.9755/ejfa.v25i11.16660 CrossRefGoogle Scholar
  44. Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecol Managem 197:323–335.  https://doi.org/10.1016/j.foreco.2004.05.023 CrossRefGoogle Scholar
  45. Hamrick JL, Godt MJ (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL et al (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, pp 43–63Google Scholar
  46. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans Roy Soc London B Biol Sci 351:1291–1298.  https://doi.org/10.1098/rstb.1996.0112 CrossRefGoogle Scholar
  47. Henderson A (2009) Palms of Southern Asia. Princeton University Press, PrincetonCrossRefGoogle Scholar
  48. Henderson SA, Billotte N, Pintaud JC (2006) Genetic isolation of Cape Verde Island Phoenix atlantica (Arecaceae) revealed by microsatellite markers. Conservation Genet 7:213–223.  https://doi.org/10.1007/s10592-006-9128-7 CrossRefGoogle Scholar
  49. Hort A (1916) Theophrastus enquiry into plants and minor works on odours and weather signs. William Heinemann and G. P. Putnam’s Sons, Loeb Classical Library, London, New YorkGoogle Scholar
  50. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molec Ecol Resources 9:1322–1332.  https://doi.org/10.1111/j.1755-0998.2009.02591.x CrossRefGoogle Scholar
  51. Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A et al (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molec Ecol 18:1523–1536.  https://doi.org/10.1111/j.1365-294X.2009.04106.x CrossRefGoogle Scholar
  52. Innan H, Terauchi R, Miyashita NT (1997) Microsatellite polymorphism in natural populations of the wild plant Arabidopsis thaliana. Genetics 146:1441–1452Google Scholar
  53. IUCN (2018) The IUCN Red List of Threatened Species. Version 2018-1. Available at: http://www.iucnredlist.org. Accessed 21 Jul 2018
  54. Johnson D (1996) Palms: their conservation and sustained utilization. IUCN/SSC Palm Specialist Group, IUCN, GlandGoogle Scholar
  55. Jordano P, Godoy JA (2000) RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Molec Ecol 9:1293–1305.  https://doi.org/10.1046/j.1365-294x.2000.01009.x CrossRefGoogle Scholar
  56. Khierallah HSM, Bader SM, Baum M, Hamwieh A (2011) Genetic diversity of iraqi date palms revealed by microsatellite polymorphism. J Amer Soc Hort Sci 136:282–287CrossRefGoogle Scholar
  57. Kozlowski G, Frey D, Fazan L, Egli B, Betrisey S, Gratzfeld J, Gafri G, Pirintsos S (2014) The tertiary relict tree Zelkova abelicea (Ulmaceae): distribution, population structure and conservation status on Crete. Oryx 48:1–8.  https://doi.org/10.1017/S0030605312001275 CrossRefGoogle Scholar
  58. Krueger RR (1995) Mystique of the date palms links old and new worlds. Diversity 11:128–129Google Scholar
  59. Krueger RR (1998) Date palm germplasm: overview and utilization in the USA. In: Afifi MAR,  Al-Badawy AA (eds) Proceedings of 1st international conference on date palms, 8–10 March 1998, Al-Ain, United Arab Emirates. United Air Emirates University, Al-Ain, pp 2–37Google Scholar
  60. Krueger RR (2011) Date palm germplasm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer Netherlands, Dordrecht, pp 313–336CrossRefGoogle Scholar
  61. Küçükala A, Zeydanlı U, Bilgin CC (2008) Datça-Bozburun Özel Çevre Koruma Bölgesinde Yayılış Gösteren Datça Hurması (Phoenix theophrasti) Türünün Biyolojik Çeşitlilik Yönünden Korunması ve İzlenmesi Projesi, Final Rapor. Muğla Özel Çevre Koruma Müdürlüğü, AnkaraGoogle Scholar
  62. Liolios CC, Sotiroudis GT, Chinou I (2009) Fatty acids, sterols, phenols and antioxidant activity of phoenix theophrasti fruits, growing in Crete, Greece. Pl Foods Human Nutr 64:52–61.  https://doi.org/10.1007/s11130-008-0100-1 CrossRefGoogle Scholar
  63. Liu ZW, Biyashev RM, Saghai-Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876.  https://doi.org/10.1007/BF00224088 CrossRefGoogle Scholar
  64. Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R et al (2012) Broad scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molec Ecol 21:3729–3738.  https://doi.org/10.1111/j.1365-294X.2012.05656.x CrossRefGoogle Scholar
  65. Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman & Hall, London, pp 15–40CrossRefGoogle Scholar
  66. Médail F, Quézel P (2003) Conséquences écologiques possibles des changements climatiques sur la flore et la végétation du bassin méditerranéen. Bocconea 16:397–422Google Scholar
  67. Milne RI (2006) Northern Hemisphere plant disjunctions: a window on Tertiary land bridges and climate change. Ann Bot (Oxford) 98:465–472.  https://doi.org/10.1093/aob/mcl148 CrossRefGoogle Scholar
  68. Milne RI, Abbott RJ (2002) The origin and evolution of tertiary relict floras. Advances Bot Res 38:281–314.  https://doi.org/10.1016/S0065-2296(02)38033-9 CrossRefGoogle Scholar
  69. Munier P (1973) Le palmier-dattier. Maisonneuve et Larose, ParisGoogle Scholar
  70. Nei M (1972) Genetic distance between populations. Amer Naturalist 106:283–292.  https://doi.org/10.1086/282771 CrossRefGoogle Scholar
  71. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362.  https://doi.org/10.1111/j.1558-5646.1997.tb02422.x CrossRefGoogle Scholar
  72. Oihabi A (2000) Technical report: date palm genetic resources in North Africa. In: Proceeding of the date palm international symposium, 22–25 February 2000, Windhoek, Namibia. Ministry of Agriculture, Water and Rural Development, Windhoek, pp 333–335Google Scholar
  73. Peñaloza-Ramírez JM, Aguilar-Amezquita B, Núñez-Farfán J, Pérez-Nasser N, Albarrán-Lara AL, Oyama K (2016) Consequences of habitat fragmentation on genetic structure of Chamaedorea alternans (Arecaceae) palm populations in the tropical rain forests of Los Tuxtlas, Veracruz, Mexico. Revista Mex Biodivers 87:990–1001.  https://doi.org/10.1016/j.rmb.2016.07.004 CrossRefGoogle Scholar
  74. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  75. Quézel P, Médail F (2003) Ecologie et Biogeographie des Forêts du Bassin Méditerranéen. Elsevier, ParisGoogle Scholar
  76. Reid WV, Money HA, Cropper A (2005) Ecosystems and human well-being: synthesis/millennium ecosystem assessment. Island Press, WashingtonGoogle Scholar
  77. Rhouma A (1994). Le palmier dattier en Tunisie. I: le patrimoine génétique. ARABESQUE, TunisGoogle Scholar
  78. Rice WR (1989) Analysis tables of statistical tests. Evolution 43:223–225.  https://doi.org/10.1111/j.1558-5646.1989.tb04220.x CrossRefGoogle Scholar
  79. Rivera D, Obón de Castro C, Carreño E, Inocenciol C, Alcaraz F, Rios S, Palazón JA, Vázquez L, Laguna E (2008) Morphological systematics of date-palm diversity (Phoenix Arecaceae) in Western Europe and some preliminary molecular results. Acta Hort 799:97–104.  https://doi.org/10.17660/ActaHortic.2008.799.11 CrossRefGoogle Scholar
  80. Röder MS, Plaschke J, König SU (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Molec Genet Genomics 246:327–333.  https://doi.org/10.1007/BF00288605 CrossRefGoogle Scholar
  81. Röder MS, Korzun V, Wendehake K (1998) A microsatellite map of wheat. Genetics 149:2007–2023Google Scholar
  82. Röser M (1994) Pathways of karyological differentiation in palms (Arecaceae). Pl Syst Evol 189:83–122CrossRefGoogle Scholar
  83. Schug MD, Hutter CM, Wetterstrand KA (1998) The mutation rates of di-, tri- and tetra-nucleotide repeats in Drosophila melanogaster. Molec Biol Evol 15:1751–1760.  https://doi.org/10.1093/oxfordjournals.molbev.a025901 CrossRefGoogle Scholar
  84. Sedra MH, Lashermes P, Trouslot P, Combes MC, Hamon S (1998) Identification and genetic diversity analysis of date palm (Phoenix dactylifera L.) varieties from Morocco using RAPD markers. Euphytica 103:75–82.  https://doi.org/10.1023/A:1018377827903 CrossRefGoogle Scholar
  85. Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889.  https://doi.org/10.1139/g93-116 CrossRefGoogle Scholar
  86. Sharma R, Mahla HR, Mohapatra T (2003) Isolating plant genomic DNA without liquid nitrogen. Pl Molec Biol Reporter 21:43–50.  https://doi.org/10.1007/BF02773395 CrossRefGoogle Scholar
  87. Shen D, Bo W, Xu F, Wu R (2014) Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient. BMC Genet 15(Suppl 1):S11.  https://doi.org/10.1186/1471-2156-15-S1-S11 CrossRefGoogle Scholar
  88. Srivashtav VS, Kapadia CV, Mahatma MK, Jha SK, Jha S, Ahmed T (2013) Genetic diversity analysis of date palm (Phoenix dactylifera L.) in the Kutch region of India using RAPD and ISSR markers. Emirates J Food Agric 25(11):907–915.  https://doi.org/10.9755/ejfa.v25i11.14325 CrossRefGoogle Scholar
  89. Stebbins GL (1942) Polyploid complexes in relation to ecology and the history of floras. Amer Naturalist 76:36–45.  https://doi.org/10.1086/281012 CrossRefGoogle Scholar
  90. Steel RGD, Torrie JH (1980) Principles and procedures of statistics, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  91. Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39:277–287.  https://doi.org/10.1139/g96-038 CrossRefGoogle Scholar
  92. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res 12:4127–4138.  https://doi.org/10.1093/nar/12.10.4127 CrossRefGoogle Scholar
  93. Thiel-Egenter C, Gugerli F, Alvarez N (2009) Effects of species traits on the genetic diversity of high-mountain plants: a multispecies study across the Alps and the Carpathians. Global Ecol Biogeogr 18:78–87.  https://doi.org/10.1111/j.1466-8238.2008.00421.x CrossRefGoogle Scholar
  94. UNCED (1992) Convention on biological diversity. United Nations Conference on Environment and Development, Geneva (UNCED Report, UN Doc A/CONF, 151/26)Google Scholar
  95. Vardareli N (2012) Genetic variation in Datça Date Palm (Phoenix theophrasti) populations and relations of the species with other palm species revealed by SSR markers. MSc Thesis, Mugla Sitki Kocman University, MuglaGoogle Scholar
  96. Vogiatzakis IN, Rackham O (2008) Crete. In: Vogiatzakis IN, Pungetti G, Mannion AM (eds) Mediterranean island landscapes, natural and cultural approaches. Springer, New YorkCrossRefGoogle Scholar
  97. Volis S, Blecher M, Sapir Y (2009) Complex ex situ - in situ approach for conservation of endangered plant species and its application to Iris atrofusca of the Northern Negev. In: Krupp F, Musselman LJ, Kotb MMA, Weidig I (eds) Environment, Biodiversity and Conservation in the Middle East. Proceedings of the First Middle Eastern Biodiversity Congress, Aqaba, Jordan, 20–23 October 2008. BioRisk 3:137–160.  https://doi.org/10.3897/biorisk.3.5
  98. Wright S (1978) Evolution and the genetics of population, variability within and among natural populations. The University of Chicago Press, ChicagoGoogle Scholar
  99. Yeh FC, Yang RC, Boyle TJB (1999) POPGENE version 1.31 Microsoft window-based freeware for population genetic analysis. Available at: http://www.ualberta.ca/~fyeh/popgene.html. Accessed 12 Aug 2012
  100. Zehdi S, Trifi M, Billotte N, Marakchi M, Pintaud JC (2004) Genetic diversity of Tunisian date palms (Phoenix dactylifera L.) revealed by nuclear microsatellite polymorphism. Hereditas 141:278–287.  https://doi.org/10.1111/j.1601-5223.2004.01855.x CrossRefGoogle Scholar
  101. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by Simple Sequence Repeat (SSR)-Anchored Polymerase Chain Reaction Amplification. Genomics 20:176–183.  https://doi.org/10.1006/geno.1994.1151 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceMuğla Sıtkı Koçman UniversityMuğlaTurkey
  2. 2.Ula Vocational School, Department of Bee BreedingMuğla Sıtkı Koçman UniversityMuğlaTurkey
  3. 3.Department of Medicinal and Aromatic Plants, Köyceğiz Vocational SchoolMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations