Plant Systematics and Evolution

, Volume 304, Issue 4, pp 577–582 | Cite as

Small genome size variation across the range of European beech (Fagus sylvatica)

Short Communication


Interpopulation variation of relative and absolute genome size was studied in Fagus sylvatica subsp. sylvatica and subsp. orientalis. The study included 18 populations of beech planted in a common-garden experiment in central Slovakia and three additional populations from the Caucasus. Nuclear DNA content was determined by means of flow cytometry using the AT-specific fluorochrome 4′,6-diamidino-2-phenylindole and non-specific propidium iodide, and its associations with climate, growth, phenology and physiological traits were assessed. The approximate average nuclear DNA content (2C) across all samples was 1.178 ± 0.020 pg. The lowest mean relative genome sizes were observed in the Alpine range, whereas they increased toward the range margins; no clear trend was observed for 2C values. Temperature seasonality and temperature annual range were found to be negatively associated with genome size. Among phenotypic traits, the maximum chlorophyll a fluorescence yield (Fv/Fm) was found to be negatively correlated with relative genome size, whereas phenology and some photosynthetic parameters were correlated with the 2C values.


C-value DNA content Fagaceae Flow cytometry Genome size Provenance trial 



The provenance experiment was established under the auspices of the Institute of Forest Genetics (Johann Heinrich von Thünen Institute) in Grosshansdorf, Germany, and measurements were done within the COST Action E52 coordinated by G. von Wühlisch. We thank B. Kehrer (Hochschule Geisenheim) for laboratory support. Physiological measurements were done by Ľ. Ditmarová, D. Kurjak, J. Majerová, E. Pšidová and G. Jamnická. The study was supported by research grants of the Slovak Research and Development Agency APVV-0135-12, Slovak Grant Agency for Science VEGA 1/0269/16 and internal funds of the Senckenberg Research Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2018_1501_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 82 kb)
606_2018_1501_MOESM2_ESM.pdf (53 kb)
Supplementary material 2 (PDF 52 kb)
606_2018_1501_MOESM3_ESM.pdf (81 kb)
Supplementary material 3 (PDF 81 kb)
606_2018_1501_MOESM4_ESM.pdf (62 kb)
Supplementary material 4 (PDF 75 kb)
606_2018_1501_MOESM5_ESM.pdf (61 kb)
Supplementary material 5 (PDF 61 kb)
606_2018_1501_MOESM6_ESM.pdf (72 kb)
Supplementary material 6 (PDF 72 kb)


  1. Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7. CrossRefPubMedGoogle Scholar
  2. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. CrossRefPubMedGoogle Scholar
  3. Beaulieu JM, Smith S, Leitch IJ (2010) On the tempo of genome size evolution in angiosperms. J Bot 2010:989152. Google Scholar
  4. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot (Oxford) 95:45–90. CrossRefGoogle Scholar
  5. Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot (Oxford) 107:467–590. CrossRefGoogle Scholar
  6. Bennetzen JL, Ma JX, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Oxford) 95:127–132. CrossRefGoogle Scholar
  7. Chen S-C, Cannon CH, Kua C-S, Liu J-J, Galbraith DW (2014) Genome size variation in the Fagaceae and its implications for trees. Tree Genet Genomes 10:977–988. CrossRefGoogle Scholar
  8. Chinchaladze TG, Tugushi KI, Todua BT (1974) Karyology of the beech Fagus orientalis Lipsky. Soobshch Akad Nauk Gruzinsk SSR 75:201–203Google Scholar
  9. Chokchaichamnankit P, Anamthawat-Jónsson K, Chulalaksananukul W (2008) Chromosomal mapping of 18S-25S and 5S ribosomal genes on 15 species of Fagaceae from Northern Thailand. Silvae Genet 57:5–13Google Scholar
  10. Doležel J, Doleželová M, Novák FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Pl 36:351–357. CrossRefGoogle Scholar
  11. Dzialuk A, Chybicki I, Welc M, Śliwińska E, Burczyk J (2007) Presence of triploids among oak species. Ann Bot (Oxford) 99:959–964. CrossRefGoogle Scholar
  12. Emiliani G, Paffetti D, Giannini R (2009) Identification and molecular characterization of LTR and LINE retrotransposable elements in Fagus sylvatica L. iForest 2:119–126. CrossRefGoogle Scholar
  13. Gallois A, Burrus M, Brown S (1999) Evaluation of the nuclear DNA content and GC percent in four varieties of Fagus sylvatica L. Ann Forest Sci 56:615–618. CrossRefGoogle Scholar
  14. Gömöry D, Paule L (2011) Trade-off between height growth and spring flushing in common beech (Fagus sylvatica L.). Ann Forest Sci 68:975–984. CrossRefGoogle Scholar
  15. Gömöry D, Paule L, Vyšný J (2007) Patterns of allozyme variation in western Eurasian Fagus. Bot J Lin Soc 154:165–174. CrossRefGoogle Scholar
  16. Gömöry D, Ditmarová L, Hrivnák M, Jamnická G, Kmeť J, Krajmerová D, Kurjak D (2015) Differentiation in phenological and physiological traits in European beech (Fagus sylvatica L.). Eur J Forest Res 134:1075–1085. CrossRefGoogle Scholar
  17. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot (Oxford) 82:27–35. CrossRefGoogle Scholar
  18. Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot (Oxford) 95:255–260. CrossRefGoogle Scholar
  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. CrossRefGoogle Scholar
  20. Husband BC, Schemske DW, Burton TL, Goodwillie C (2002) Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proc Roy Soc London, Ser B, Biol Sci 269:2565–2571. CrossRefGoogle Scholar
  21. Jaretzky R (1930) Zur Zytologie der Fagales. Planta 10:120–137CrossRefGoogle Scholar
  22. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76. CrossRefGoogle Scholar
  24. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot (Oxford) 95:177–190. CrossRefGoogle Scholar
  25. Kremer A, Casasoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (ed) Forest Trees. Springer, Berlin, pp 161–187CrossRefGoogle Scholar
  26. Levin DA, Wilson AC (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc Natl Acad Sci USA 73:2086–2090CrossRefPubMedPubMedCentralGoogle Scholar
  27. Magri D, Vendramin GG, Comps B et al (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–222. CrossRefPubMedGoogle Scholar
  28. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. CrossRefPubMedGoogle Scholar
  29. Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. CrossRefPubMedGoogle Scholar
  30. Ohri D (2005) Climate and growth form: the consequences for genome size in plants. Pl Biol (Stuttgart) 7:449–458. CrossRefGoogle Scholar
  31. Ohri D, Ahuja MR (1991) Giemsa C-banding in Fagus sylvatica L., Betula pendula Roth and Populus tremula L. Silvae Genet 40:72–74Google Scholar
  32. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Meth Cell Biol 33:105–110CrossRefGoogle Scholar
  33. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15. CrossRefGoogle Scholar
  34. Price HJ, Johnston JS (1996) Influence of light on DNA content of Helianthus annuus L. Proc Natl Acad Sci USA 93:11264–11267. CrossRefPubMedPubMedCentralGoogle Scholar
  35. SAS (2010) SAS/STAT® User’s Guide. Available at:
  36. Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61Google Scholar
  37. Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot (Oxford) 101:421–433. CrossRefGoogle Scholar
  38. Van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Statist Software 7:1–12Google Scholar
  39. Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Amer J Bot 80:1235–1241CrossRefGoogle Scholar
  40. Wetzel G (1929) Chromosomenstudien bei den Fagales. Bot Arch 25:257–282Google Scholar
  41. Zoldoš V, Papeš D, Brown SC, Panaud O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter and intra-population variation. Genome 41:162–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany and Molecular EvolutionSenckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
  2. 2.Faculty of ForestryTechnical University in ZvolenZvolenSlovakia

Personalised recommendations