Plant Systematics and Evolution

, Volume 304, Issue 4, pp 485–499 | Cite as

Phylogeography of rare fern Polystichum glaciale endemic to the subnival zone of the Sino-Himalaya

  • Dong Luo
  • Bo Xu
  • Santosh Kumar Rana
  • Zhi-Min Li
  • Hang Sun
Original Article


Previous phylogeographical studies of the Sino-Himalaya (SH) regions have mainly focused on seed plants from forest or alpine grassland habitats, whereas the flora of the subnival summits, especially the ferns, has largely been ignored. Here, we report on phylogeographical studies on Polystichum glaciale, a rare fern endemic to the subnival belt of the SH region. Based on cpDNA/nDNA sequences, strikingly rich genetic diversity was detected in P. glaciale. Combined with the lack of ‘isolation by distance’ and the major genetic differentiation among populations revealed by AMOVA, they collectively suggested that P. glaciale exhibited island-like population genetic structure. Phylogeographical structure with two genetic groups (N vs. S) was further identified in P. glaciale by the SAMOVA based on cpDNA data, of which the geographical pattern was mainly associated with the biogeographical boundary between the northern and southern Hengduan Mountains at 29°N latitude. We concluded that extremely complex topography of SH region and highly fragmented subnival habitat have played a critical role in shaping phylogeographical structure and genetic differentiation of P. glaciale. Mismatch distribution analyses and ecological niche modelling suggested P. glaciale has undergone north-westward retreat after the LGM. Predictions of its future distribution indicated the possibility of compression within suitable subnival habitats. We suggest in situ conservation should be urgently implemented to preserve this rare fern. Our results represent a first framework for a comprehensive understanding of the biogeographical history of fern species associated with the subnival belt of the SH region and the effects of historical events on its genetic architecture.


Ecological niche modelling Genetic diversity Phylogeography Polystichum glaciale Sino-Himalaya Subnival vegetation 



The authors thank Mr. Shuang-zhi Li for his help in sample collection. We also thank Ms. Guan-qin Liu for the help with the experiments. This work was supported by the National Key R&D Program of China (2017YFC0505200 to Hang Sun), the Major Program of National Natural Science Foundation of China (31590820 and 31590823 to Hang Sun) and the National Natural Science Foundation of China (31600170 to Dong Luo, 31460047 to Bo Xu, 31670206 to Zhi-Min Li).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2018_1495_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)
606_2018_1495_MOESM2_ESM.pdf (182 kb)
Supplementary material 2 (PDF 181 kb)
606_2018_1495_MOESM3_ESM.pdf (153 kb)
Supplementary material 3 (PDF 153 kb)
606_2018_1495_MOESM4_ESM.pdf (102 kb)
Supplementary material 4 (PDF 101 kb)
606_2018_1495_MOESM5_ESM.pdf (55 kb)
Supplementary material 5 (PDF 55 kb)
606_2018_1495_MOESM6_ESM.pdf (67 kb)
Supplementary material 6 (PDF 66 kb)
606_2018_1495_MOESM7_ESM.nex (125 kb)
Supplementary material 7 (NEX 125 kb)


  1. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, MassachusettsGoogle Scholar
  2. Bystriakova N, Peregrym M, Erkens RHJ, Bezsmertna O, Schneider H (2012) Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst Biodivers 10:305–315. CrossRefGoogle Scholar
  3. Bystriakova N, Ansell SW, Russell SJ, Grundmann M, Vogel JC, Schneider H (2014) Present, past and future of the European rock fern Asplenium fontanum: combining distribution modelling and population genetics to study the effect of climate change on geographic range and genetic diversity. Ann Bot (Oxford) 113:453–465. CrossRefGoogle Scholar
  4. Chen JM, Liu F, Gituru WR, Wang QF (2008) Chloroplast DNA phylogeography of the Chinese endemic alpine quillwort Isoetes hypsophila Hand.-Mazz. (Isoetaceae). Int J Pl Sci 169:792–798. CrossRefGoogle Scholar
  5. Chen YS, Deng T, Zhou Z, Sun H (2017) Is the East Asian flora ancient or not?. National Science Review Natl Sci Rev nwx156.
  6. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Molec Biol Evol 7:111–122PubMedGoogle Scholar
  7. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1660. CrossRefGoogle Scholar
  8. Cun YZ, Wang XQ (2010) Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: geographical isolation contributed to high population differentiation. Molec Phylogen Evol 56:972–982. CrossRefGoogle Scholar
  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Molec Ecol 11:2571–2581. CrossRefGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  13. Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H (2013) Phylogeography of Sophora davidii (Leguminosae) across the ‘Tanaka-Kaiyong Line’, an important phytogeographic boundary in Southwest China. Molec Ecol 22:4270–4288. CrossRefGoogle Scholar
  14. Flinn KM (2006) Reproductive biology of three fern species may contribute to differential colonization success in post-agricultural forests. Amer J Bot 93:1289–1294. CrossRefGoogle Scholar
  15. Flinn KM, Loiacono MM, Groff HE (2014) Low reproductive success of hay-scented fern (Dennstaedtia punctilobula) regardless of inbreeding level or time since disturbance. Botany 92:911–915. CrossRefGoogle Scholar
  16. Fu L, Jin L (1992) China plant red data book: rare and endangered plants. Science Presss, BeijingGoogle Scholar
  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  18. Harpending HC (1994) Signature of ancient population-growth in a low-resolution Mitochondrial-DNA Mismatch Distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  19. He K, Jiang XL (2014) Sky islands of southwest of China. I: an overview of phylogeographic patterns. Chin Sci Bull 59:585–597. CrossRefGoogle Scholar
  20. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. CrossRefPubMedGoogle Scholar
  21. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. CrossRefGoogle Scholar
  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. CrossRefPubMedGoogle Scholar
  23. Ishikawa H, Watano Y, Kano K, Ito M, Kurita S (2002) Development of primer sets for PCR amplification of the PgiC gene in ferns. J Pl Res 115:65–70. CrossRefGoogle Scholar
  24. Kato M, Nakato N, Cheng X, Iwatsuki K (1992) Cytotaxonomic study of ferns of Yunnan, Southwestern China. Bot Mag (Tokyo) 105:105–124. CrossRefGoogle Scholar
  25. Kirchner N, Greve R, Stroeven AP, Heyman J (2011) Paleoglaciological reconstructions for the Tibetan Plateau during the last glacial cycle: evaluating numerical ice sheet simulations driven by GCM-ensembles. Quatern Sci Rev 30:248–267. CrossRefGoogle Scholar
  26. Klekowski (1979) The genetics and reproductive biology of ferns. In: Dyer AF (ed) The experimental biology of ferns. Academic Press, London, pp 133–170Google Scholar
  27. Koch MA, Karl R, German DA, Al-Shehbaz IA (2012) Systematics, taxonomy and biogeography of three new Asian genera of Brassicaceae tribe Arabideae: an ancient distribution circle around the Asian high mountains. Taxon 61:955–969Google Scholar
  28. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  29. Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Molec Ecol 12:931–949. CrossRefGoogle Scholar
  30. Le Péchon T, Zhang L, He H, Zhou XM, Bytebier B, Gao XF, Zhang LB (2016) A well-sampled phylogenetic analysis of the polystichoid ferns (Dryopteridaceae) suggests a complex biogeographical history involving both boreotropical migrations and recent transoceanic dispersals. Molec Phylogen Evol 98:324–336. CrossRefGoogle Scholar
  31. Liu HM, Zhang XC, Chen ZD, Qiu YL (2007a) Inclusion of the Eastern Asia endemic genus Sorolepidium in Polydsithum: evidence from the chloroplast rbcL gene and morphological characteristics. Chin Sci Bull 52:631–638CrossRefGoogle Scholar
  32. Liu HM, Zhang XC, Wang W, Qiu YL, Chen ZD (2007b) Molecular phylogeny of the fern family dryopteridaceae inferred from chloroplast rbcL and atpB genes. Int J Pl Sci 168:1311–1323. CrossRefGoogle Scholar
  33. Luo D, Yue JP, Sun WG, Xu B, Li ZM, Comes HP, Sun H (2016) Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains: first insights from comparative phylogeography of four perennial herbs. J Biogeogr 43:31–43. CrossRefGoogle Scholar
  34. Luo D, Xu B, Li ZM, Sun H (2017) The ‘Ward Line–Mekong–Salween Divide’ is an important floristic boundary between the eastern Himalaya and Hengduan Mountains: evidence from the phylogeographical structure of subnival herbs Marmoritis complanatum (Lamiaceae). Bot J Linn Soc 185:482–496. CrossRefGoogle Scholar
  35. Maki M, Asada Y (1998) High genetic variability revealed by allozymic loci in the narrow endemic fern Polystichum otomasui (Dryopteridaceae). Heredity 80:604–610. CrossRefGoogle Scholar
  36. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  37. Meng LH, Chen G, Li ZH, Yang YP, Wang ZK, Wang LY (2015) Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya–Hengduan Mountains. Sci Rep 5:10396. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. CrossRefPubMedGoogle Scholar
  39. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. CrossRefPubMedGoogle Scholar
  40. Nei M (1975) Molecular population genetics and evolution. North-Holland Amsterdam, NetherlandsGoogle Scholar
  41. Pauli H, Gottfried M, Dirnböck T, Dullinger S, Grabherr G (2003) Assessing the long term dynamics of endemic plants at summit areas. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 243–248Google Scholar
  42. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295. CrossRefGoogle Scholar
  43. Peck JH, Peck CJ, Farrar DR (1990) Influences of life history attributes on formation of local and distant fern populations. Amer Fern J 80:126–142. CrossRefGoogle Scholar
  44. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Aparajita M, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565. CrossRefPubMedGoogle Scholar
  45. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. CrossRefGoogle Scholar
  46. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedPubMedCentralGoogle Scholar
  47. Prost S, Guralnick RP, Waltari E, Fedorov VB, Kuzmina E, Smirnov N, Van Kolfschoten T, Hofreiter M, Vrieling K (2013) Losing ground: past history and future fate of Arctic small mammals in a changing climate. Global Change Biol 19:1854–1864. CrossRefGoogle Scholar
  48. Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molec Phylogen Evol 59:225–244. CrossRefGoogle Scholar
  49. Rambaut A (2009) FigTree version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh.
  50. Rana SK, Rana HK, Ghimire SK, Shrestha KK, Ranjitkar S (2017) Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J Mountain Sci 14:558–570. CrossRefGoogle Scholar
  51. Ranjitkar S, Xu J, Shrestha KK, Kindt R (2014) Ensemble cast of climate suitability for the trans-Himalayan Nyctaginaceae species. Ecol Model 282:18–24. CrossRefGoogle Scholar
  52. Rogers AR, Harpending H (1992) Population-growth makes waves in the distribution of pairwise genetic-differences. Molec Biol Evol 9:552–569PubMedGoogle Scholar
  53. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. CrossRefPubMedGoogle Scholar
  54. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. CrossRefPubMedGoogle Scholar
  55. Schuettpelz E, Grusz AL, Windham MD, Pryer KM (2008) The utility of nuclear gapCp in resolving polyploid fern origins. Syst Bot 33:621–629CrossRefGoogle Scholar
  56. Sessa EB, Zimmer EA, Givnish TJ (2012) Phylogeny, divergence times, and historical biogeography of New World Dryopteris (Dryopteridaceae). Amer J Bot 99:730–750. CrossRefGoogle Scholar
  57. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288. CrossRefGoogle Scholar
  58. Shepherd LD, Perrie LR, Brownsey PJ (2007) Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum. Molec Ecol 16:4536–4549. CrossRefGoogle Scholar
  59. Shi YF, Li JJ, Li BY (1998) Uplift and environmental changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guangdong Science and Technology Press, GuangzhouGoogle Scholar
  60. Soltis PS, Soltis DE (1987) Population structure and estimates of gene flow in the homosporous fern Polystichum munitum. Evolution 41:620–629. CrossRefPubMedGoogle Scholar
  61. Soltis PS, Soltis DE (1988) Genetic variation and population genetic structure in the fern Blechnum spicant (Blechnaceae) from western North America. Amer J Bot 75:37–44. CrossRefGoogle Scholar
  62. Soltis PS, Soltis DE (1990) Evolution of inbreeding and outcrossing in ferns and fern-allies. Plant Spec Biol 5:1–11. CrossRefGoogle Scholar
  63. Soltis PS, Soltis DE, Wolf PG, Riley JM (1989) Electrophoretic Evidence for Interspecific Hybridization in Polystichum acrostichoides. Amer Fern J 79:7–13. CrossRefGoogle Scholar
  64. Strand AE, LeebensMack J, Milligan BG (1997) Nuclear DNA-based markers for plant evolutionary biology. Molec Ecol 6:113–118. CrossRefGoogle Scholar
  65. Su YJ, Wang T, Zheng B, Jiang Y, Chen GP, Ouyang PY, Sun YF (2005) Genetic differentiation of relictual populations of Alsophila spinulosa in southern China inferred from cpDNA trnL-F noncoding sequences. Molec Phylogenet Evol 34:323–333. CrossRefPubMedGoogle Scholar
  66. Sun H, Zhang JW, Deng T, Boufford DE (2017) Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers 39:161–166CrossRefGoogle Scholar
  67. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods), version 4.0b 10. Sinauer, SunderlandGoogle Scholar
  68. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal Primers for Amplification of 3 Noncoding Regions of Chloroplast DNA. Pl Molec Biol 17:1105–1109. CrossRefGoogle Scholar
  69. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedPubMedCentralGoogle Scholar
  70. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The scientific basis, contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  71. Trewick SA, Morgan-Richards M, Russell SJ, Henderson S, Rumsey FJ, Pinter I, Barrett I, Gibby M, Vogel JC (2002) Polyploidy, phylogeography and Pleistocene refugia of the rock fern Asplenium ceterach: evidence from chloroplast DNA. Molec Ecol 11:2003–2012. CrossRefGoogle Scholar
  72. Wang ZJ, Guan KY (2011) Genetic structure and phylogeography of a relict tree fern, Sphaeropteris brunoniana (Cyatheaceae) from China and Laos inferred from cpDNA sequence variations: implications for conservation. J Syst Evol 49:72–79. CrossRefGoogle Scholar
  73. Wang FY, Ge XJ, Gong X, Hu CM, Hao G (2008) Strong genetic differentiation of Primula sikkimensis in the East Himalaya–Hengduan Mountains. Biochem Genet 46:75–87. CrossRefPubMedGoogle Scholar
  74. Wang L, Wu ZQ, Bystriakova N, Ansell SW, Xiang QP, Heinrichs H, Zhang XC (2011) Phylogeography of the Sino-Himalayan Fern Lepisorus clathratus on “the roof of the world”. PLoS ONE 6:e25896. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang L, Schneider H, Wu ZQ, He LJ, Zhang XC, Xiang QP (2012) Indehiscent sporangia enable the accumulation of local fern diversity at the Qinghai-Tibetan Plateau. BMC Evol Biol 12:158. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Warshall P (1995) The Madrean Sky Island Archipelago: a planetary overview. In: DeBano LB, Gottfied GJ, Hamre RH (eds) Biodiversity and management of the Madrean Archipelago: the sky islands of Southwestern United States and Northwestern Mexico. US Department of Agriculture, Fort Collins, pp 6–18Google Scholar
  77. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. PubMedGoogle Scholar
  78. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, California, pp 315–322Google Scholar
  79. Wolf PG (1995) Phylogenetic analyses of rbcL and nuclear ribosomal RNA gene sequences in Dennstaedtiaceae. Amer Fern J 85:306–327. CrossRefGoogle Scholar
  80. Wolf PG, Schneider H, Ranker TA (2001) Geographic distributions of homosporous ferns: does dispersal obscure evidence of vicariance? J Biogeogr 28:263–270. CrossRefGoogle Scholar
  81. Wright S (1969) Evolution and the genetics of populations, vol. 2. The Theory of Gene Frequencies, vol. 2. University of Chicago Press, ChicagoGoogle Scholar
  82. Wright S (1978) Variability within and among natural populations, evolution and the genetics of populations. The University of Chicago Press, ChicagoGoogle Scholar
  83. Wu CY, Wu SG (1996) A proposal for new floristic kingdom (realm)-the E. Asiatic Kingdom, its delineation and characteristics. In: Zhang AL, Wu SG (eds) Floristic characteristics and diversity of eastern Asian plants. Springer, Hong Kong, pp 3–42Google Scholar
  84. Xu B, Li ZM, Sun H (2014) Seed plants of alpine subnival in Hengduan Mountains. Science Press, BeijingGoogle Scholar
  85. Yue JP, Sun H, Baum DA, Li JH, Al-Shehbaz IA, Ree R (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. J Syst Evol 47:402–415. CrossRefGoogle Scholar
  86. Zhang RZ, Zheng D, Yang QY, Liu YH (1997) Physical geography of Hengduan Mountains. Science Press, BeijingGoogle Scholar
  87. Zhang DC, Boufford DE, Ree RH, Sun H (2009) The 29 degrees N latitudinal line: an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China. Nordic J Bot 27:405–412. CrossRefGoogle Scholar
  88. Zhang LB, Wu SG, Xiang JY, Xing FW, He H, Wang FG, Lu SG, Dong SY, Barrington DS, Iwatsuki K, Christenhusz MJM, Mickel JT, Kato M, Gibert MG (2013) Dryopteridaceae. In: Wu CY, Raven PH (eds) Flora of China, vol. 2–3. Science Press, Beijing, pp 541–724Google Scholar
  89. Zhang DC, Ye JX, Sun H (2016) Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J Biogeogr 43:2465–2476. CrossRefGoogle Scholar
  90. Zheng Z, Yuan BY, Petit-Maire N (1998) Paleoenvironments in China during the last glacial maximum and the Holocene optimum. Episodes 21:152–158Google Scholar
  91. Zheng BX, Xu QQ, Shen YP (2002) The relationship between climate change and Quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quatern Int 97–98:93–101. CrossRefGoogle Scholar
  92. Zhou SZ, Wang XL, Wang J, Xu LB (2006) A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai-Tibetan Plateau. Quatern Int 154:44–51. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Dong Luo
    • 1
  • Bo Xu
    • 2
  • Santosh Kumar Rana
    • 1
    • 3
  • Zhi-Min Li
    • 4
  • Hang Sun
    • 1
  1. 1.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.College of ForestrySouthwest Forestry UniversityKunmingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Life ScienceYunnan Normal UniversityKunmingChina

Personalised recommendations