Advertisement

Plant Systematics and Evolution

, Volume 304, Issue 4, pp 549–575 | Cite as

Comparative phylogeography of capitulate Campanula species from the Balkans, with description of a new species, C. daucoides

  • Jelena M. Aleksić
  • Siniša Škondrić
  • Dmitar Lakušić
Original Article
  • 211 Downloads

Abstract

Capitulate inflorescence is a specific, strongly adaptive and rare feature in the genus Campanula. We studied morphologically eight capitulate Campanula taxa from the Balkans (1537 individuals/52 populations) and one more species from Caucasus at the molecular level (using chloroplast markers trnGUCC-trnSGCU and psbA-trnH, 130 individuals/58 populations) to assess their relations and evolutionary histories. Although all studied taxa were well circumscribed at both the morphological and molecular levels (except morphologically distinct but genetically invariable C. moesiaca which acquired its single haplotype via past cytoplasmic introgression from C. cervicaria), their relations inferred from the two datasets were incongruent possibly due to the homoplasy of morphological characters frequently reported in Campanula. Interspecific hybridization and introgression affected majority of studied species and may be more common in Campanula than previously thought. These processes, along with incomplete lineage sorting and retention of ancestral polymorphisms, hampered our phylogenetic reconstructions and prevented us to fully resolve species relations, and to support monophyletic origin of capitulate Campanula species. Nonetheless, several cryptic taxa were delineated, and C. daucoides was described as a new capitulate Campanula species. Different evolutionary histories and multiple glacial refugia were inferred for all species represented by multiple samples (except C. moesiaca). According to our dating, their speciation was in most cases triggered by various geo-historic events such as the uplift of the Alpide belt, Messinian Salinity Crisis, or desiccation of the Pannonian Sea/Pliocene Lakes from the central Balkans, while their further diversification was mainly driven by the onset of the Quaternary and cycles of glacials/interglacials.

Keywords

Campanula sp. Capitulate inflorescence Divergence time estimates Morphological characters Plastid genome The Balkans 

Notes

Acknowledgements

This work was supported by Ministry of Education and Science of the Republic of Serbia (Grant No. 173030 to D. Lakušić). The authors thank Dr. Zoltan Barina (Budapest) for data on C. tymphaea from Albania, Ivana Janković for making a line drawing of the newly described species, dr. K. Jones for reviewing and editing manuscript, and an anonymous reviewer who helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2018_1490_MOESM1_ESM.pdf (66 kb)
Supplementary material 1 (PDF 65 kb)
606_2018_1490_MOESM2_ESM.pdf (99 kb)
Supplementary material 2 (PDF 98 kb)
606_2018_1490_MOESM3_ESM.pdf (212 kb)
Supplementary material 3 (PDF 212 kb)
606_2018_1490_MOESM4_ESM.pdf (35 kb)
Supplementary material 4 (PDF 35 kb)
606_2018_1490_MOESM5_ESM.xls (156 kb)
Supplementary material 5 (XLS 155 kb)
606_2018_1490_MOESM6_ESM.xls (38 kb)
Supplementary material 6 (XLS 37 kb)
606_2018_1490_MOESM7_ESM.pdf (607 kb)
Supplementary material 7 (PDF 606 kb)
606_2018_1490_MOESM8_ESM.pdf (399 kb)
Supplementary material 8 (PDF 398 kb)
606_2018_1490_MOESM9_ESM.pdf (53 kb)
Supplementary material 9 (PDF 52 kb)

References

  1. Aleksić JM, Geburek T (2014) Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conservation Genet 15:87–107.  https://doi.org/10.1007/s10592-013-0523-6 CrossRefGoogle Scholar
  2. Aleksić JM, Stojanović D, Banović B, Jančić R (2012) A simple and efficient DNA isolation method for Salvia officinalis. Biochem Genet 50:881–892.  https://doi.org/10.1007/s10528-012-9528-y CrossRefPubMedGoogle Scholar
  3. Anderson E, Stebbins GL Jr (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388.  https://doi.org/10.2307/2405784 CrossRefGoogle Scholar
  4. Arnold ML (2004) Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Pl Cell 16:562–570.  https://doi.org/10.1105/tpc.160370 CrossRefGoogle Scholar
  5. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  6. Azzaroli A, Guazzone G (1979) Terrestrial mammals and land connections in the Mediterranean before and during the Messinian. Palaeogeogr Palaeoclimatol Palaeoecol 29:155–167.  https://doi.org/10.1016/0031-0182(79)90079-8 CrossRefGoogle Scholar
  7. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molec Biol Evol 16:37–48.  https://doi.org/10.1093/oxfordjournals.molbev.a026036 CrossRefPubMedGoogle Scholar
  8. Bogdanović S, Brullo S, Rešetnik I, Lakušić D, Šatović Z, Liber Z (2014a) Campanula skanderbegii: Molecular and morphological evidence of a new Campanula species (Campanulaceae) endemic to Albania. Syst Bot 39:1250–1260.  https://doi.org/10.1600/036364414X682571 CrossRefGoogle Scholar
  9. Bogdanović S, Brullo S, Rešetnik I, Šatović Z, Liber Z (2014b) Campanula teutana, a new isophyllous Campanula (Campanulaceae) from the Adriatic region. Phytotaxa 162:001–017.  https://doi.org/10.11646/phytotxa.162.1.1 CrossRefGoogle Scholar
  10. Bogdanović S, Rešetnik I, Brullo S, Shuka L (2015) Campanula aureliana (Campanulaceae), a new species from Albania. Pl Syst Evol 301:1555–1567.  https://doi.org/10.1007/s00606-014-1171-0 CrossRefGoogle Scholar
  11. Borsch T, Korotkova N, Raus T, Lobin W, Löhne C (2009) The petD group II intron as a species level marker: utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). Willdenowia 39:7–33.  https://doi.org/10.3372/wi.39.39101 CrossRefGoogle Scholar
  12. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797.  https://doi.org/10.1073/pnas.0905845106 CrossRefPubMedCentralGoogle Scholar
  13. Cellinese N, Smith SA, Edwards EJ, Kim ST, Haberle RC, Avramakis M, Donoghue MJ (2009) Historical biogeography of the endemic Campanulaceae of Crete. J Biogeogr 36:1253–1269.  https://doi.org/10.1111/j.1365-2699.2008.02077.x CrossRefGoogle Scholar
  14. Chiang YC, Hung KH, Moore SJ, Ge XJ, Hung S, Hsu TW, Schaal BA, Chiang TY (2009) Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms. BMC Evol Biol 9:161.  https://doi.org/10.1186/1471-2148-9-161 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crowl AA, Mavrodiev E, Mansion G, Haberle R, Pistarino A, Kamari G, Phitos D, Borsch T, Cellinese N (2014) Phylogeny of Campanuloideae (Campanulaceae) with emphasis on the utility of nuclear pentatricopeptide repeat (PPR) genes. PLoS ONE 9:e94199.  https://doi.org/10.1371/journal.pone.0094199 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Crowl AA, Visger CJ, Mansion G, Hand R, Wu HH, Kamari G, Phitos D, Cellinese N (2015) Evolution and biogeography of the endemic Roucela complex (Campanulaceae: Campanula) in the Eastern Mediterranean. Ecol Evol 5:5329–5343.  https://doi.org/10.1002/ece3.1791 CrossRefGoogle Scholar
  17. Crowl AA, Miles NW, Visger CJ, Hansen K, Ayers T, Haberle R, Cellinese N (2016) A global perspective on Campanulaceae: biogeographic, genomic, and floral evolution. Amer J Bot 103:233–245.  https://doi.org/10.3732/ajb.1500450 CrossRefGoogle Scholar
  18. Damboldt J (1978) Campanula. In: Davis PH (ed) Flora of Turkey and East Aegean Islands, vol. 6. University Press, Edinburgh, pp 2–64Google Scholar
  19. de la Vara A, Meijer PT, Wortel MJR (2013) Model study of the circulation of the Miocene Mediterranean Sea and Paratethys: closure of the Indian Gateway. Clim Past Discuss 9:4385–4424.  https://doi.org/10.5194/cpd-9-4385-2013 CrossRefGoogle Scholar
  20. de Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ (2013) Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Molec Ecol 22:4397–4412.  https://doi.org/10.1111/mec.12403 CrossRefGoogle Scholar
  21. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973.  https://doi.org/10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eddie WMM, Ingrouille MJ (1999) Polymorphism in the Aegean ‘‘five-loculed’’ species of the genus Campanula, Section Quinqueloculares (Campanulaceae). Nord J Bot 19:153–169.  https://doi.org/10.1111/j.1756-1051.1999.tb00659.x CrossRefGoogle Scholar
  23. Eddie WMM, Shulkina T, Gaskin J, Haberle RC, Jansen RK (2003) Phylogeny of Campanulaceae s. str. inferred from its sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard 90:554–575.  https://doi.org/10.2307/3298542 CrossRefGoogle Scholar
  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Syst 24:217–242.  https://doi.org/10.1146/annurev.es.24.110193.001245 CrossRefGoogle Scholar
  26. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050.  https://doi.org/10.1073/pnas.97.13.7043 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Eronen JT, Ataabadi MM, Micheels A, Karme A, Bernor RL, Fortelius M (2009) Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proc Natl Acad Sci USA 106:11867–11871.  https://doi.org/10.1073/pnas.0902598106 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fedorov AA (1957) Campanulaceae. In: Shishkin BK (ed) Flora SSSR, vol. 24. Akademii Nauk SSSR, Moscow, pp 126–450 (in Russian)Google Scholar
  29. Fedorov AA, Kovanda M (1976) Campanula L. In: Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 4. Cambridge University Press, Cambridge, pp 4–93Google Scholar
  30. Filipowicz N, Nee MH, Renner SS (2012) Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes. PhytoKeys 10:83–94.  https://doi.org/10.3897/phytokeys.10.2558 CrossRefGoogle Scholar
  31. Fiz-Palacios O, Valcárcel V (2013) From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspect Pl Ecol Evol Syst 15:130–137.  https://doi.org/10.1016/j.ppees.2013.02.002 CrossRefGoogle Scholar
  32. Frajman B, Rešetnik I, Weiss-Schneeweiss H, Ehrendorfer F, Schönswetter P (2015) Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae). BMC Evol Biol 15:140.  https://doi.org/10.1186/s12862-015-0425-y CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gómez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Springer, Berlin, pp 155–188CrossRefGoogle Scholar
  34. González-Gutiérrez PA, Köhler E, Borsch T (2013) New species of Buxus (Buxaceae) from northeastern Cuba based on morphological and molecular characters, including some comments on molecular diagnosis. Willdenowia 43:125–137.  https://doi.org/10.3372/wi.43.43115 CrossRefGoogle Scholar
  35. Grant BR, Grant PR (1996) High survival of Darwin’s finch hybrids: effects of beak morphology and diets. Ecology 77:500–509.  https://doi.org/10.2307/2265625 CrossRefGoogle Scholar
  36. Graur D, Li WH (2000) Fundamentals in molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  37. Gridelli E (1950) II problema delle specie a diffusione attuale transadriatica con particolare riguardo ai Coleotteri. Bull Zool 17(S2):421–441.  https://doi.org/10.1080/11250005009436823 CrossRefGoogle Scholar
  38. Griffiths HI, Kryštufek B, Reed JM (2004) Balkan biodiversity: Pattern and process in the European hotspot. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  39. Haberle RC, Dang A, Lee T, Peñaflor C, Cortes-Burns H, Oestreich A, Raubeson L, Cellinese N, Edwards EJ, Kim S-T, Eddie WMM, Jansen RK (2009) Taxonomic and biogeographic implications of a phylogenetic analysis of the Campanulaceae based on three chloroplast genes. Taxon 58:715–734Google Scholar
  40. Harzhauser M, Mandic O (2008) Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeogr Palaeoclimatol Palaeoecol 260:417–434.  https://doi.org/10.1016/j.palaeo.2007.12.013 CrossRefGoogle Scholar
  41. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913.  https://doi.org/10.1038/35016000 CrossRefPubMedGoogle Scholar
  42. Hughes PD, Woodward JC, Gibbard PL (2007) Middle Pleistocene cold stage climates in the Mediterranean: new evidence from the glacial record. Earth Planet Sci Lett 253:50–56.  https://doi.org/10.1016/j.epsl.2006.10.019 CrossRefGoogle Scholar
  43. Ingrouille M, Eddie B (2006) Plants: evolution and diversity. Cambridge University Press, New YorkGoogle Scholar
  44. Janković I, Šatović Z, Liber Z, Kuzmanović N, Radosavljević I, Lakušić D (2016) Genetic diversity and morphological variability within the Balkan endemic Campanula secundiflora s.l. (Campanulaceae). Bot J Linn Soc 180:64–88.  https://doi.org/10.1111/boj.12359 CrossRefGoogle Scholar
  45. Joly S, McLenachan PA, Lockhart PJ (2009) A statistical approach for distinguishing hybridization and incomplete lineage sorting. Amer Naturalist 174:E54–E70.  https://doi.org/10.1086/600082 CrossRefGoogle Scholar
  46. Jones K, Korotkova N, Petersen J, Henning T, Borsch T, Kilian N (2017) Dynamic diversification history with rate upshifts in Holarctic bell-flowers (Campanula and allies). Cladistics 6:637–666.  https://doi.org/10.1111/cla.12187 CrossRefGoogle Scholar
  47. Karami MP, de Leeuw A, Krijgsman W, Meijer PTh, Wortel MJR (2011) The role of gateways in the evolution of temperature and salinity of semi-enclosed basins: an oceanic box model for the Miocene Mediterranean Sea and Paratethys. Glob Planet Change 79:73–88.  https://doi.org/10.1016/j.gloplacha.2011.07.011 CrossRefGoogle Scholar
  48. Korotkova N, Borsch T, Quandt D, Taylor NP, Müller KF, Barthlott W (2011) What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). Amer J Bot 98:1549–1572.  https://doi.org/10.3732/ajb.1000502 CrossRefGoogle Scholar
  49. Krstić N, Savić L, Jovanović G (2012) The Neogene lakes on the Balkan land. Geološki anali Balkanskoga poluostrva 73:37–60.  https://doi.org/10.2298/GABP1273037K CrossRefGoogle Scholar
  50. Lakušić D, Rakić T, Stefanović S, Surina B, Stevanović V (2009) Edraianthus × lakusicii (Campanulaceae) a new intersectional natural hybrid: morphological and molecular evidence. Pl Syst Evol 280:77–88.  https://doi.org/10.1007/s00606-009-0168-6 CrossRefGoogle Scholar
  51. Lakušić D, Liber Z, Nikolić T, Surina B, Kovačić S, Bogdanović S, Stefanović S (2013) Molecular phylogeny of Campanula pyramidalis species complex (Campanulaceae) inferred from chloroplast and nuclear non-coding sequences and its taxonomic implications. Taxon 62:505–524.  https://doi.org/10.12705/623.1 CrossRefGoogle Scholar
  52. Lammers TG (2007) World checklist and bibliography of Campanulaceae. Royal Botanic Garaden, KewGoogle Scholar
  53. Leimu R, Mutikainen P, Koricheva J, Fisher M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952.  https://doi.org/10.1111/j.1365-2745.2006.01150.x CrossRefGoogle Scholar
  54. Lewis PO, Holder MT, Holsinger KE (2005) Polytomies and Bayesian phylogenetic inference. Syst Biol 54:241–253.  https://doi.org/10.1080/10635150590924208 CrossRefPubMedGoogle Scholar
  55. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30.  https://doi.org/10.1080/10635150500354928 CrossRefPubMedGoogle Scholar
  56. Magyar I, Geary DH, Müller P (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 147:151–167.  https://doi.org/10.1016/S0031-0182(98)00155-2 CrossRefGoogle Scholar
  57. Mansion G, Parolly G, Crowl AA, Mavrodiev E, Cellinese N, Oganesian M, Fraunhofer K, Kamari G, Phitos D, Haberle R, Akaydin G, Ikinci N, Raus T, Borsch T (2012) How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS ONE 7:e50076.  https://doi.org/10.1371/journal.pone.0050076 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Médail F, Quézel P (1997) Hotspots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Missouri Bot Gard 84:112–127.  https://doi.org/10.2307/2399957 CrossRefGoogle Scholar
  59. Meulenkamp JE, Sissingh W (2003) Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeogr Palaeoclimatol Palaeoecol 196:209–228.  https://doi.org/10.1016/S0031-0182(03)00319-5 CrossRefGoogle Scholar
  60. Milivojević M, Menković L, Ćalić J (2008) Pleistocene glacial relief of the central part of Mt. Prokletije (Albanian Alps). Quatern Int 190:112–122.  https://doi.org/10.1016/j.quaint.2008.04.006 CrossRefGoogle Scholar
  61. Molins A, Bacchetta G, Rosato M, Rossello JA, Mayol M (2011) Molecular phylogeography of Thymus herba-barona (Lamiaceae): insight into the evolutionary history of the flora of the western Mediterranean islands. Taxon 60:1295–1305Google Scholar
  62. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefPubMedGoogle Scholar
  63. Oganesian ME (1995) Synopsis of the Caucasian Campanulaceae. Candollea 50:275–308Google Scholar
  64. Pantić NK (1984) On the evolution of land flora based on plant fossils from the territory of Serbia. In: Jankovic M (ed) Végétation de la République Socialiste de Serbie, tome 1. Partie générale. Académie Serbe des Sciences et des Arts, Belgrade, pp 191–246Google Scholar
  65. Park JM, Kovacic S, Liber Z, Eddie WMM, Schneeweiss GM (2006) Phylogeny and biogeography of isophyllous species of Campanula (Campanulaceae) in the Mediterranean area. Syst Bot 31:862–880.  https://doi.org/10.1600/036364406779695924 CrossRefGoogle Scholar
  66. Popov S, Shcherba IG, Ilyina IB, Nevesskaya AL, Paramonova PN, Khondkarian OS, Magyar I (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238:91–106.  https://doi.org/10.1016/j.palaeo.2006.03.020 CrossRefGoogle Scholar
  67. Postigo Mijarra JM, Barrón E, Gómez Manzaneque F, Morla C (2009) Floristic changes in the Iberian Peninsula and Balearic Islands (south-west Europe) during the Cenozoic. J Biogeogr 36:2025–2043.  https://doi.org/10.1111/j.1365-2699.2009.02142.x CrossRefGoogle Scholar
  68. Potter PE, Szatmari P (2009) Global Miocene tectonics and the modern world. Earth Sci Rev 96:279–295.  https://doi.org/10.1016/j.earscirev.2009.07.003 CrossRefGoogle Scholar
  69. Potts R, Behrensmeyer AK (1992) Terrestrial Paleoecology in the Cenozoic. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (eds) Terrestrial Ecosystems Through Time. University of Chicago Press, Chicago, pp 419–541Google Scholar
  70. Purvis A, Garland T (1993) Polytomies in comparative analyses of continuous characters. Syst Biol 42:569–575.  https://doi.org/10.2307/2992489 CrossRefGoogle Scholar
  71. Puttick MN, Clark J, Donoghue PC (2015) Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proc Roy Soc B 282:20152289.  https://doi.org/10.1098/rspb.2015.2289 CrossRefGoogle Scholar
  72. Quézel P (1978) Analysis of the flora of Mediterranean and Saharan Africa. Ann Missouri Bot Gard 65:479–534.  https://doi.org/10.2307/2398860 CrossRefGoogle Scholar
  73. Rambaut A (2006) FigTree v1.1.1: Tree figure drawing tool. Available at: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 1 Mar 2016
  74. Rambaut A, Drummond AJ (2007) Tracer v1.4. Available at: http://beast.bio.ed.ac.uk/Tracer. Accessed 1 Mar 2016
  75. Reed JM, Kryštufek B, Eastwood WJ (2004) Pattern and process in Balkan biodiversity—an overview. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity: Pattern and process in the European hotspot. Kluwer Academic Publishers, Dordrecht, pp 9–22CrossRefGoogle Scholar
  76. Rešetnik I, Baričevič D, Rusu DB, Carović-Stanko K, Chatzopoulou P, Dajić-Stevanović Z, Gonceariuc M, Grdiša M, Greguraš D, Ibraliu A et al (2016) Genetic diversity and demographic history of wild and cultivated/naturalised plant populations: evidence from Dalmatian sage (Salvia officinalis L., Lamiaceae). PLoS ONE 11:e0159545.  https://doi.org/10.1371/journal.pone.0159545 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Amer J Bot 82:944–953CrossRefGoogle Scholar
  78. Ronikier М, Zalewska-Gałosz Ј (2014) Independent evolutionary history between the Balkan ranges and more northerly mountains in Campanula alpina s.l. (Campanulaceae): genetic divergence and morphological segregation of taxa. Taxon 63:116–131.  https://doi.org/10.12705/631.4 CrossRefGoogle Scholar
  79. Ronikier M, Cieślak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molec Ecol 17:1763–1775.  https://doi.org/10.1111/j.1365-294X.2008.03664.x CrossRefGoogle Scholar
  80. Roquet C, Sáez L, Aldasoro JJ, Susanna A, Alarcón ML, Garcia-Jacas N (2008) Natural delineation, molecular phylogeny and floral evolution in Campanula. Syst Bot 33:203–217.  https://doi.org/10.1600/036364408783887465 CrossRefGoogle Scholar
  81. Rouchy JM, Caruso A (2006) The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sediment Geol 188–189:35–67.  https://doi.org/10.1016/j.sedgeo.2006.02.005 CrossRefGoogle Scholar
  82. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Molec Ecol 7:465–474.  https://doi.org/10.1046/j.1365-294x.1998.00318.x CrossRefGoogle Scholar
  83. Seberg O, Petersen G (2009) How many loci does it take to DNA barcode a Crocus? PLoS ONE 4:e4598.  https://doi.org/10.1371/journal.pone.0004598 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shulkina TV, Gaskin JF, Eddie WMM (2003) Morphological studies toward an improved classification of Campanulaceae s. str. Ann Missouri Bot Gard 90:576–591.  https://doi.org/10.2307/3298543 CrossRefGoogle Scholar
  85. Silvestro D, Michalak I (2011) RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity Evol 12:335–337.  https://doi.org/10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  86. Škondrić S (2014) Sistematski i filogeografski odnosi glavičastih predstavnika roda Campanula L. (Campanulaceae) na centralnom delu Balkanskog poluostrva. PhD Thesis, University of Belgrade, Belgrade (in Serbian)Google Scholar
  87. Škondrić S, Aleksić JM, Lakušić D (2014) Campanula cichoracea (Campanulaceae), a neglected species from the Balkan-Carpathian C. lingulata complex as inferred from molecular and morphological characters. Willdenowia 44:77–96.  https://doi.org/10.3372/wi.44.44111 CrossRefGoogle Scholar
  88. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.  https://doi.org/10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  89. StatSoft (1996) STATISTICA (Data Analysis Software System), Version 5.1. www.statsoft.com StatSoft Inc., Tulsa
  90. Stefanović S, Lakušić D, Kuzmina M, Međedović S, Tan K, Stevanović V (2008) Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non-coding plastid DNA sequences. Taxon 57:452–475Google Scholar
  91. Stevanović V, Vasić V (1995) Biodiverzitet Jugoslavije sa pregledom vrsta od međunarodnog značaja. Biološki fakultet i Ecolibri, Beograd (in Serbian)Google Scholar
  92. Stevanović V, Vukojičić S, Šinžar-Sekulić J, Lazarević M, Tomović G, Tan K (2009) Distribution and diversity of Arctic-Alpine species in the Balkans. Pl Syst Evol 283:219–235.  https://doi.org/10.1007/s00606-009-0230-4 CrossRefGoogle Scholar
  93. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc Roy Soc B 277:661–671.  https://doi.org/10.1098/rspb.2009.1272 CrossRefGoogle Scholar
  94. Stojanović D, Aleksić JM, Jančić I, Jančić R (2015) A Mediterranean medicinal plant in the continental Balkans: a plastid DNA-based phylogeographic survey of Salvia officinalis (Lamiaceae) and its conservation implications. Willdenowia 45:103–118.  https://doi.org/10.3372/wi.45.45112 CrossRefGoogle Scholar
  95. Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432CrossRefGoogle Scholar
  96. Surina B, Schönswetter P, Schneeweiss GM (2011) Quaternary range dynamics of ecologically divergent species (Edraianthus serpyllifolius and E. tenuifolius, Campanulaceae) within the Balkan refugium. J Biogeogr 38:1381–1393.  https://doi.org/10.1111/j.1365-2699.2011.02493.x CrossRefGoogle Scholar
  97. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7:453–464.  https://doi.org/10.1046/j.1365-294x.1998.00289.x CrossRefGoogle Scholar
  98. Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607PubMedPubMedCentralGoogle Scholar
  99. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Turrill WB (1929) The plant life of the Balkan Peninsula. Oxford University Press, OxfordGoogle Scholar
  101. Tzedakis PC (2004) The Balkans as prime glacial refugial territory of European temperate trees. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity: Pattern and process in the European hotspot. Kluwer Academic Publishers, Dordrecht, pp 49–68CrossRefGoogle Scholar
  102. Utescher T, Djordjević-Milutinović D, Bruch A, Mosbrugger V (2007) Palaeoclimate and vegetation change in Serbia during the last 30 Ma. Palaeogeogr Palaeoclimatol Palaeoecol 253:141–152.  https://doi.org/10.1016/j.palaeo.2007.03.037 CrossRefGoogle Scholar
  103. Valente LM, Savolainen V, Vargas P (2010) Unparalleled rates of species diversification in Europe. Proc Roy Soc B 277:1489–1496.  https://doi.org/10.1098/rspb.2009.2163 CrossRefGoogle Scholar
  104. Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 60:719–731.  https://doi.org/10.1093/sysbio/syr025 CrossRefPubMedGoogle Scholar
  105. Yesson C, Culham A (2006) Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling. Syst Biol 55:785–802.  https://doi.org/10.1080/1063515060081570 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jelena M. Aleksić
    • 1
  • Siniša Škondrić
    • 2
  • Dmitar Lakušić
    • 3
  1. 1.Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering (IMGGE)University of BelgradeBelgradeSerbia
  2. 2.Department of Biology, Faculty of Natural Sciences and MathematicsUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  3. 3.Department for Plant Ecology and Phytogeography, Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations