Advertisement

Plant Systematics and Evolution

, Volume 304, Issue 2, pp 185–203 | Cite as

Phylogenetic species delimitation unravels a new species in the genus Sclerorhachis (Rech.f.) Rech.f. (Compositae, Anthemideae)

  • Hajar Hassanpour
  • Hassan Zare-MaivanEmail author
  • Ali SonboliEmail author
  • Shahrokh Kazempour-Osaloo
  • Florian Wagner
  • Salvatore Tomasello
  • Christoph Oberprieler
Original Article

Abstract

Sclerorhachis is a small genus and belongs to subtribe Handeliinae of tribe Anthemideae (Compositae). While according to the Flora Iranica only two species of the genus are indicated for Iran (i.e. S. platyrachis and S. leptoclada), the genus constitutes a taxonomically very interesting group here due to the presence of several isolated populations deviating from others morphologically. In the present study, we have used phylogenetic analyses as well as sequence-based species delimitation methods for clarifying species boundaries in Sclerorhachis. We used sequence information from the nrDNA regions ITS (ITS1–5.8S–ITS2) and ETS along with the plastid intergenic spacer region rpl32–trnL(UAG) in an array of sequence-based species delimitation methods: (1) the Bayesian implementation of generalised mixed Yule-coalescent (bGMYC) model and (2) a Bayesian implementation of the Poisson tree processes (bPTP) method. We compared the results of these methods with species delimitations derived from the statistical parsimony networks constructed with TCS and the application of a monophyletic species concept. When the results of phylogeny-based methods, species delimitation approaches, and morphological evidences are jointly considered, our study supports the classification of S. leptoclada as an independent species and reveals a new species of Sclerorhachis in the Binalud Mountains (described as S. binaludensis). It also indicates a new record of the species S. caulescens (formerly only known from Afghanistan) for Iran. Additionally, a morphologically deviating and phylogenetically independent population group of S. platyrachis was found along the NE boundary of Iran, which is considered being conspecific with the Turkmenistan species S. kjurendaghi. As a consequence, the present study indicates that Sclerorhachis is represented in the territory of Iran by five independent, evolutionary significant units (i.e. species).

Keywords

Molecular phylogeny Morphological characters Sclerorhachis Species delimitation 

Notes

Acknowledgements

This work is financially supported by the research council of the University of Tarbiat Modares through a Ph.D. student fellowship of the first author. We gratefully acknowledge the help of the FUMH staff, especially Mr. Mohammad Raza Joharchi and Dr. Farshid Memariani (Mashhad, Iran) along with Mrs. Maryam Etemad for support with morphological data in the MPH herbarium, and also special thanks are given to Dr. Ernst Vitek (Vienna, Austria) and Dr. Andreas Fleischmann (Munich, Germany) for providing herbarium specimens as well as to Dr. Manuela Bog for support with the analysis of data, along with Mrs. Nicole Schmelzer for technical support in the molecular laboratory of CO at Regensburg University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2017_1461_MOESM1_ESM.txt (51 kb)
Online Resource 1 Alignment of concatenated nrDNA ITS+ETS sequences in nexus format. Gaps coded as absent=“0”, present=“1”, and unknown=“N” (TXT 50 kb)
606_2017_1461_MOESM2_ESM.txt (42 kb)
Online Resource 2 Alignment of cpDNA rpl32-trnL (UAG) sequences in nexus format. Gaps coded as absent=“0”, present=“1”, and unknown=“N” (TXT 42 kb)

References

  1. Abdelaziz M, Lorite J, Muñoz-Pajares AJ, Herrador MB, Perfectti F, Gómez JM (2011) Using complementary techniques to distinguish cryptic species: a new Erysimum (Brassicaceae) species from North Africa. Amer J Bot 98:1049–1060. doi: 10.3732/ajb.1000438 CrossRefGoogle Scholar
  2. Aitchison JET, Hemsley WB (1888) Anthemis caulescens Aitch. & Hemsl. Trans Linn Soc London Bot 3:76. http://biodiversitylibrary.org/page/2925504
  3. Bagley JC, Alda F, Breitman MF, Bermingham E, van den Berghe EP, Johnson JB (2015) Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae). PLoS ONE 10:e0121139. doi: 10.1371/journal.pone.0121139 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barraclough TG, Nee S (2001) Phylogenetics and speciation. Trends Ecol Evol 16:391–399. doi: 10.1016/S0169-5347(01)02161-9 CrossRefPubMedGoogle Scholar
  5. Bazinet AL, Neel MC, Shaw KL, Cummings MP (2008) The genealogical sorting index: software and web site for quantifying the exclusivity of lineages. Available at: http://www.genealogicalsorting.org
  6. Blanco-Pastor JL, Vargas P, Pfeil BE (2012) Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS ONE 7:e39089. doi: 10.1371/journal.pone.0039089 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boissier E (1875) Flora orientalis, vol. 3. H. Georg, Geneveae et Basileae, Lyon, pp 337–357Google Scholar
  8. Borchsenius F (2009) FastGap 1.2. Department of Biological Sciences, University of Aarhus, Aarhus. Available at: http://192.38.46.42/aubot/fb/FastGap_home.htm
  9. Bremer K, Humphries CJ (1993) The generic monograph of the Asteraceae-Anthemideae. Bull Nat Hist Mus London, Bot 23:108–110. http://biodiversitylibrary.org/page/2322654
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x CrossRefGoogle Scholar
  11. Cracraft J (1983) Species concepts and speciation analysis. In: Johnston RF (ed) Current ornithology. Plenum Press, New York, pp 159–187. doi: 10.1007/978-1-4615-6781-3_6 CrossRefGoogle Scholar
  12. Cummings MP, Neel MC, Shaw KL (2008) A genealogical approach to quantifying lineage divergence. Evolution 62:2411–2422. doi: 10.1111/j.1558-5646.2008.00442.x CrossRefPubMedGoogle Scholar
  13. Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Molec Biol Evol 14:733–740CrossRefPubMedGoogle Scholar
  14. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Meth 9:772. doi: 10.1038/nmeth.2109 CrossRefGoogle Scholar
  15. De Pinna MC (1999) Species concepts and phylogenetics. Rev Fish Biol Fish 9:353–373. doi: 10.1023/A:1008911414399 CrossRefGoogle Scholar
  16. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886. doi: 10.1080/10635150701701083 CrossRefPubMedGoogle Scholar
  17. Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24:332–340. doi: 10.1016/j.tree.2009.01.009 CrossRefPubMedGoogle Scholar
  18. Djamali M, Baumel A, Brewer S, Jackson ST, Kadereit JW, López-Vinyallonga S, Mehregan I, Shabanian E, Simakova A (2012) Ecological implications of Cousinia Cass. (Asteraceae) persistence through the last two glacial–interglacial cycles in the continental Middle East for the Irano-Turanian flora. Rev Palaeobot Palynol 172:10–20. doi: 10.1016/j.revpalbo.2012.01.005 CrossRefGoogle Scholar
  19. Domingos FM, Bosque RJ, Cassimiro J, Colli GR, Rodrigues MT, Santos MG, Beheregaray LB (2014) Out of the deep: cryptic speciation in a Neotropical gecko (Squamata, Phyllodactylidae) revealed by species delimitation methods. Molec Phylogen Evol 80:113–124. doi: 10.1016/j.ympev.2014.07.022 CrossRefGoogle Scholar
  20. Dong S, Schäfer-Verwimp A, Meinecke P, Feldberg K, Bombosch A, Pócs T, Schmidt AR, Reitner J, Schneider H, Heinrichs J (2012) Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort Diplasiolejeunea. Molec Phylogen Evol 65:582–594. doi: 10.1016/j.ympev.2012.07.009 CrossRefGoogle Scholar
  21. Donoghue MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 83:172–181. doi: 10.2307/3243026 CrossRefGoogle Scholar
  22. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Amer 19:11–15Google Scholar
  23. Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–722. doi: 10.2307/1221122 CrossRefGoogle Scholar
  24. Drummond AJ, Rambaut A, Suchard M, Xie D (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973. doi: 10.1093/molbev/mss075 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dumas P, Barbut J, Le Ru B, Silvain J-F, Clamens A-L, d’Alençon E, Kergoat GJ (2015) Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS ONE 10:e0122407. doi: 10.1371/journal.pone.0122407 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eberle J, Warnock RC, Ahrens D (2016) Bayesian species delimitation in Pleophylla chafers (Coleoptera)—the importance of prior choice and morphology. BMC Evol Biol 16:94. doi: 10.1186/s12862-016-0659-3 CrossRefGoogle Scholar
  27. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  28. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefPubMedGoogle Scholar
  29. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  31. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Molec Biol Evol 27:570–580. doi: 10.1093/molbev/msp274 CrossRefPubMedGoogle Scholar
  32. Hernández-León S, Gernandt DS, de la Rosa JAP, Jardón-Barbolla L (2013) Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferred from plastid DNA. PLoS ONE 8:e70501. doi: 10.1371/journal.pone.0070501 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ho SY, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380. doi: 10.1093/sysbio/syp035 CrossRefPubMedGoogle Scholar
  34. Hu H, Al-Shehbaz IA, Sun Y, Hao G, Wang Q, Liu J (2015) Species delimitation in Orychophragmus (Brassicaceae) based on chloroplast and nuclear DNA barcodes. Taxon 64:714–726. doi: 10.12705/644.4 CrossRefGoogle Scholar
  35. Hudson RR (1990) Gene genealogies and the coalescent process. Oxford Surv Evol Biol 7:1–44Google Scholar
  36. Huson DH, Kloepper TH (2005) Computing recombination networks from binary sequences. Bioinformatics 21:ii159–ii165. doi: 10.1093/bioinformatics/bti1126 CrossRefPubMedGoogle Scholar
  37. Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molec Biol Evol 23:1602–1612. doi: 10.1093/molbev/msl018 CrossRefPubMedGoogle Scholar
  38. Joly S (2012) JML: testing hybridization from species trees. Molec Ecol Resources 12:179–184. doi: 10.1111/j.1755-0998.2011.03065 CrossRefGoogle Scholar
  39. Joly S, McLenachan PA, Lockhart PJ (2009) A statistical approach for distinguishing hybridization and incomplete lineage sorting. Amer Naturalist 174:E54–E70. doi: 10.1086/600082 CrossRefGoogle Scholar
  40. Khan FAA, Phillips CD, Baker RJ (2014) Timeframes of speciation, reticulation, and hybridization in the bulldog bat explained through phylogenetic analyses of all genetic transmission elements. Syst Biol 63:96–110. doi: 10.1093/sysbio/syt062 CrossRefPubMedGoogle Scholar
  41. Konowalik K, Wagner F, Tomasello S, Vogt R, Oberprieler C (2015) Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Molec Phylogen Evol 92:308–328. doi: 10.1016/j.ympev.2015.06.003 CrossRefGoogle Scholar
  42. Kovalevskaja SS (1987) Sclerorhachis kjurendaghi (Kurbanov) Kovalovsk. Novosti Sist Vyssh Rast 24:169 (in Russian) Google Scholar
  43. Kuchta SR, Brown AD, Converse PE, Highton R (2016) Multilocus phylogeography and species delimitation in the Cumberland Plateau salamander, Plethodon kentucki: incongruence among data sets and methods. PLoS ONE 11:e0150022. doi: 10.1371/journal.pone.0150022 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molec Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  45. Kurbanov KD (1984) Tanacetopsis kjurendaghi Kurbanov. Bot Zhurn (Moscow & Leningrad) 69:692 (in Russian) Google Scholar
  46. Lang AS, Bocksberger G, Stech M (2015) Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA. Molec Phylogen Evol 92:217–225. doi: 10.1016/j.ympev.2015.06.019 CrossRefGoogle Scholar
  47. Larson ER, Castelin M, Williams BW, Olden JD, Abbott CL (2016) Phylogenetic species delimitation for crayfishes of the genus Pacifastacus. PeerJ 4:e1915. doi: 10.7717/peerj.1915 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lecocq T, Dellicour S, Michez D, Dehon M, Dewulf A, De Meulemeester T, Brasero N, Valterová I, Rasplus JY, Rasmont P (2015) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool Scripta 44:281–297. doi: 10.1111/zsc.12107 CrossRefGoogle Scholar
  49. Lee J, Baldwin BG, Gottlieb L (2002) Phylogeny of Stephanomeria and related genera (Compositae–Lactuceae) based on analysis of 18S–26S nuclear rDNA ITS and ETS sequences. Amer J Bot 89:160–168. doi: 10.3732/ajb.89.1.160 CrossRefGoogle Scholar
  50. Leliaert F, Verbruggen H, Wysor B, De Clerck O (2009) DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). Molec Phylogen Evol 53:122–133. doi: 10.1016/j.ympev.2009.06.004 CrossRefGoogle Scholar
  51. Linder CR, Goertzen LR, Heuvel BV, Francisco-Ortega J, Jansen RK (2000) The complete external transcribed spacer of 18S–26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molec Phylogen Evol 14:285–303. doi: 10.1006/mpev.1999.0706 CrossRefGoogle Scholar
  52. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30. doi: 10.1080/10635150500354928 CrossRefPubMedGoogle Scholar
  53. Maureira-Butler IJ, Pfeil BE, Muangprom A, Osborn TC, Doyle JJ (2008) The reticulate history of Medicago (Fabaceae). Syst Biol 57:466–482. doi: 10.1080/10635150802172168 CrossRefPubMedGoogle Scholar
  54. Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of diversity. Chapman and Hall, London, pp 381–423Google Scholar
  55. Memariani F, Akhani H, Joharchi MR (2016) Endemic plants of Khorassan-Kopet Dagh floristic province in Irano-Turanian region: diversity, distribution patterns and conservation status. Phytotaxa 249:31–117. doi: 10.11646/phytotaxa.249.1.5 CrossRefGoogle Scholar
  56. Meng C, Kubatko LS (2009) Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model. Theor Populat Biol 75:35–45. doi: 10.1016/j.tpb.2008.10.004 CrossRefGoogle Scholar
  57. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop (GCE), 14 Nov 2010, New Orleans, LA, pp 1–8Google Scholar
  58. Mozaffarian M (2008) Sclerorhachis (Rech.f.) Rech.f. In: Assadi M, Massoumi AA, Mozaffarian M (eds) Flora of Iran. Compositae: anthemideae and echinopeae, vol. 59. Research Institute of Forest and Rangelands Press, Tehran, pp 63–66Google Scholar
  59. Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans, Ser B 344:305–311. doi: 10.1098/rstb.1994.0068 CrossRefGoogle Scholar
  60. Oberprieler C, Himmelreich S, Vogt R (2007) A new subtribal classification of the tribe Anthemideae (Compositae). Willdenowia 37:89–114. doi: 10.3372/wi.37.37104 CrossRefGoogle Scholar
  61. Oberprieler C, Himmelreich S, Källersjö M, Vallès J, Watson LERV (2009) Anthemideae. In: Funk VA (ed) Systematics, evolution, and biogeography of compositae. IAPT, Vienna, pp 631–666Google Scholar
  62. Page R (2001) TreeView v1.6.6. Available at: http://taxonomy.zoology.gla.ac.uk/rod/rod.html
  63. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609. doi: 10.1080/10635150600852011 CrossRefPubMedGoogle Scholar
  64. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer
  65. Rechinger KH (1944) Ergebnisse einer botanischen Reise nach dem Iran, 1937. IV. Teil. Ann Naturhist Mus Wien 55:265–295Google Scholar
  66. Rechinger KH (1969) Sclerorhachis (Rech. f.) Rech. f. Anz Österr Akad Wiss. Math.-Naturwiss Kl 105:242Google Scholar
  67. Rechinger KH (1986) Sclerorhachis. In: Rechinger KH (ed) Flora Iranica, No. 158. Akademische Druck- und Verlagsanstalt Graz, Graz, pp 45–48Google Scholar
  68. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196. doi: 10.1186/1471-2148-12-196 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  70. Rosen DE (1979) Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bull Amer Mus Nat Hist 162:267–376. http://hdl.handle.net/2246/1281
  71. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817CrossRefPubMedPubMedCentralGoogle Scholar
  72. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288. doi: 10.3732/ajb.94.3.275 CrossRefGoogle Scholar
  73. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity Evol 12:335–337. doi: 10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  74. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381. doi: 10.1093/sysbio/49.2.369 CrossRefPubMedGoogle Scholar
  75. Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470. doi: 10.1016/S0169-5347(03)00184-8 CrossRefGoogle Scholar
  76. Sonboli A, Oberprieler C (2010) Phylogenetic relationship and taxonomic position of Xylanthemum tianschanicum (Krasch.) Muradyan (Compositae, Anthemideae) as inferred from nrDNA ITS data. Biochem Syst Ecol 38:702–707. doi: 10.1016/j.bse.2010.05.001 CrossRefGoogle Scholar
  77. Sonboli A, Stroka K, Osaloo SK, Oberprieler C (2012) Molecular phylogeny and taxonomy of Tanacetum L. (Compositae, Anthemideae) inferred from nrDNA ITS and cpDNA trnH–psbA sequence variation. Pl Syst Evol 298:431–444. doi: 10.1007/s00606-011-0556-6 CrossRefGoogle Scholar
  78. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  79. Su X, Wu G, Li L, Liu J (2015) Species delimitation in plants using the Qinghai–Tibet Plateau endemic Orinus (Poaceae: Tridentinae) as an example. Ann Bot (Oxford) 116:35–48. doi: 10.1093/aob/mcv062 CrossRefGoogle Scholar
  80. Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Ass. Inc., SunderlandGoogle Scholar
  81. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedPubMedCentralGoogle Scholar
  82. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tzvelev NN (1961) Cancrinia paropamisica (Krasch.) Tezvel. In: Schischkin BK, Bobrov EG (eds) Flora USSR, vol. 26. Bishen Singh Mahendra Pal Singh, Koeltz Science Books, Königstein, pp 296–297Google Scholar
  84. Werneck FP, Leite RN, Geurgas SR, Rodrigues MT (2015) Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga. BMC Evol Biol 15:94. doi: 10.1186/s12862-015-0368-3 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wheeler Q, Meier R (2000) Species concepts and phylogenetic theory: a debate. Columbia University Press, New YorkGoogle Scholar
  86. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322Google Scholar
  87. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. doi: 10.1093/bioinformatics/btt499 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhu Z, Wu L, Xi P, Song Z, Zhang Y (1985) A research on Tertiary palynology from the Qaidam Basin. Petroleum Industry Press, Beijing (in Chinese with English abstract) Google Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of Plant Biology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Biology, Medicinal Plants and Drugs Research InstituteShahid Beheshti UniversityTehranIran
  3. 3.Evolutionary and Systematic Botany Group, Institute of Plant SciencesUniversity of RegensburgRegensburgGermany

Personalised recommendations