Skip to main content
Log in

The evolutionary history of Senna ser. Aphyllae (Leguminosae–Caesalpinioideae), an endemic clade of southern South America

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In the legume genus Senna, series Aphyllae includes seven species of leafless shrubs and subshrubs from arid, semiarid and xerophilous areas of three different biogeographic subregions in southern South America. In this study, we investigated the evolutionary history of Aphyllae in a molecular phylogenetic framework. We reconstructed phylogenetic relationships among Aphyllae species based on DNA sequence data of four plastid (rpS16, rpL16, matK, trnL-F) and one nuclear (ITS) region from 23 accessions, analyzed with parsimony, Bayesian and maximum likelihood methods. We inferred the evolutionary and biogeographic history estimating divergence times and reconstructing ancestral character states and ancestral areas of distribution. Series Aphyllae was found to be monophyletic, and the taxa formed two main clades: Clade A gathering S. aphylla var. aphylla, S. crassiramea, S. rigidicaulis and S. spiniflora; and Clade B grouping S. acanthoclada, S. aphylla var. divaricata, S. aphylla var. pendula and S. pachyrrhiza. The morphologically complex S. aphylla appears thus polyphyletic. Molecular dating and ancestral area reconstructions suggest that the Aphyllae clade started to diversify in the South American Transition Zone in the Late Pliocene. Based on these results, we hypothesize that this diversification occurred during the last period of Andean uplift with the aridification in South America. The ancestral character state reconstructions suggest that, in addition to the loss of leaves in adult plants, series Aphyllae evolved various morphological features, such as fastigiate, thickened or decumbent–subdecumbent branches during the colonization and establishment in different arid and semiarid lands in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Alberdi MT, Bonadonna FP, Ortiz-Jaureguizar E (1997) Chronological correlation, paleoecology, and paleobiogeography of the late Cenozoic South American Rionegran land-mammal fauna: a review. Rev Esp Paleontol 12:249–255

    Google Scholar 

  • Amarilla LD, Anton AM, Chiapella JO, Manifiesto MM, Angulo DF, Victoria S (2015) Munroa argentina, a grass of the South American Transition Zone, survived the Andean uplift, aridification and glaciations of the quaternary. PLoS ONE 10:e0128559. doi:10.1371/journal.pone.0128559

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Nylander JAA, Persson C, Sanmartín I (2009) Tracing the impact of the Andean uplift on neotropical plant evolution. Proc Natl Acad Sci USA 106:9749–9754. doi:10.1073/pnas.0811421106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ari I, Artabe AE, Morel EM (2011) The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Bot J Linn Soc 103:409–422. doi:10.1111/j.1095-8312.2011.01657.x

    Article  Google Scholar 

  • Baranzelli MC, Johnson LA, Cosacov A, Sérsic AN (2014) Historical and ecological divergence among populations of Monttea chilensis (Plantaginaceae), an endemic endangered shrub bordering the Atacama Desert, Chile. Evol Ecol 28:751–774. doi:10.1007/s10682-014-9694-y

    Article  Google Scholar 

  • Bell CD, Donoghue MJ (2005) Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms Diversity Evol 5:147–159

    Article  Google Scholar 

  • Berry PE (1982) The systematics and evolution of Fuchsia sect. Fuchsia (Onagraceae). Ann Missouri Bot Gard 69:1–198

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. doi:10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Bravo LD (1978a) El género Cassia en la Argentina, I. Serie Aphyllae. Darwiniana 21:43–391

    Google Scholar 

  • Bravo LD (1978b) Estudio comparativo de las plántulas de las subespecies de Cassia aphylla Cav. Darwiniana 21:393–399

    Google Scholar 

  • Bravo LD (1982) Estudio de las semillas del genero Cassia, Serie Aphyllae. Darwiniana 24:455–468

    Google Scholar 

  • Bravo LD, Agulló M, Palacios R (1986) Additional notes on Senna crassiramea, S. rigidicaulis, and seeds of series Aphyllae (Caesalpiniaceae). Brittonia 38:269–272. doi:10.2307/2807354

    Article  Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86:697–718. doi:10.1111/j.1558-5646.2010.01086.x

    Article  CAS  Google Scholar 

  • Burkart A (1952) Cassia. In: Burkart A (ed) Las Leguminosas argentinas silvestres y cultivadas II. Acme Agency, Buenos Aires, pp 162–169

    Google Scholar 

  • Cabrera AL, Willink A (1980) Biogeografía de América Latina. Secretaría General de la Organización de los Estados Americanos (OEA), Washington DC

  • Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, Naciri Y (2008) The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Molec Ecol 17:3147–3159. doi:10.1111/j.1365-294X.2008.03817.x

    Article  CAS  Google Scholar 

  • Catalano SA, Vilardi JC, Tosto D, Saidman BO (2008) Molecular phylogeny and diversification history of Prosopis (Fabaceae: mimosoideae). Biol J Linn Soc 93:621–640. doi:10.1111/j.1095-8312.2007.00907.x

    Article  Google Scholar 

  • De Soyza G, Whitford WG, Martinez-Meza E, van Zee JW (1997) Variation in creosote bush (Larrea tridentata) canopy morphology in relation to habitat, soil fertility and associated annual plant communities. Amer Midl Naturalist 137:13–26

    Article  Google Scholar 

  • de Vienne DM, Giraud T, Martin OC (2007) A congruence index for testing topological similarity between trees. Bioinformatics 23:3119–3124. doi:10.1093/bioinformatics/btm500

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JA (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15. doi:10.1007/BF00986191

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973. doi:10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamus D, Palmer AR (2007) Is climate change a possible explanation for woody thickening in arid and semi-arid regions? Int J Ecol 2007:37364. doi:10.1155/2007/37364

    Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. doi:10.1186/1471-2105-5-113

    Article  Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320:1304–1307. doi:10.1126/science.1148615

    Article  CAS  PubMed  Google Scholar 

  • Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253:769–778. doi:10.1016/j.jtbi.2008.04.005

    Article  PubMed  Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786. doi:10.1111/j.1096-0031.2008.00217.x

    Article  Google Scholar 

  • Good-Avila SV, Souza V, Gaut BS, Eguiarte LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci USA 103:9124–9129. doi:10.1073/pnas.0603312103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Amer Bull 112:1091–1105. doi:10.1130/0016-7606(2000)112

    Article  Google Scholar 

  • Guerrero PC, Rosas M, Arroyo MTK, Wiens JJ (2013) Evolutionary lag times and recent origin of the biota of an ancient desert (Atacama–Sechura). Proc Natl Acad Sci USA 110:11469–11474. doi:10.1073/pnas.1308721110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley AJ, Chong G (2002) Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46. doi:10.1130/0091-7613(2002)

    Article  CAS  Google Scholar 

  • Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J Arid Environm 2:165–191

    Google Scholar 

  • Hoorn C (1993) Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeogr Palaeoclimatol Palaeoecol 105:267–309

    Article  Google Scholar 

  • Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause of changing drainage patterns in Miocene northern South America. Geology 23:237–240

    Article  Google Scholar 

  • Hoorn C, Wesselingh FP, TerSteege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science 330:927–993. doi:10.1126/science.1194585

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 10:10334–10339. doi:10.1073/pnas.0601928103

    Article  Google Scholar 

  • Hughes CE, Eastwood RJ, Bailey DC (2006) From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Philos Trans Roy Soc London B Biol Sci 361:211–225. doi:10.1098/rstb.2005.1735

    Article  Google Scholar 

  • Iriondo M (1993) Geomorphology and late quaternary of the Chaco (South America). Geomorphology 7:289–303. doi:10.1016/0169-555X(93)90059-B

    Article  Google Scholar 

  • Irwin HS, Barneby RC (1982) The American Cassiinae: a synoptical revision of Leguminosae, tribe Cassiae subtribe Cassiinae in the New World. Mem New York Bot Gard 35:567–570

    Google Scholar 

  • Jakob SS, Martinez-Meyer E, Blattner FR (2009) Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molec Biol Evol 26:907–923. doi:10.1093/molbev/msp012

    Article  CAS  PubMed  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Amer Statist Assoc 90:773–795

    Article  Google Scholar 

  • Kleinert K, Strecker MR (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina. Geol Soc Amer Bull 113:728–742. doi:10.1130/0016-7606

    Article  CAS  Google Scholar 

  • López RP (2003) Phytogeographical relations of the Andean dry valleys of Bolivia. J Biogeogr 30:1659–1668. doi:10.1046/j.1365-2699.2003.00919.x

    Article  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536. doi:10.1093/sysbio/46.3.523

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, version 2.75. Available at: http://mesquiteproject.org

  • Marazzi B, Sanderson MJ (2010) Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. Evolution 64:3570–3592. doi:10.1111/j.1558-5646.2010.01086.x

    Article  PubMed  Google Scholar 

  • Marazzi B, Endress PK, de Queiroz LP, Conti E (2006) Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. Amer J Bot 93:288–303. doi:10.3732/ajb.93.2.288

    Article  CAS  Google Scholar 

  • Marshall LG, Cifelli RL (1990) Analysis of changing diversity patterns in Cenozoic land mammal age faunas South America. Palaeovertebrata 19:169–210

    Google Scholar 

  • Mayr E (1982) Speciation and macroevolution. Evolution 36:119–1132

    Article  Google Scholar 

  • Molau U (1988) Scrophulariaceae, I: Calceolarieae. The New York Botanical Garden, Bronx

    Google Scholar 

  • Moore MJ, Jansen RK (2007) Origins and biogeography of gypsophily in the Chihuahuan desert plant group Tiquilia subg. Eddya (Boraginaceae). Syst Bot 32:392–414. doi:10.1600/036364407781179680

    Article  Google Scholar 

  • Morrone JJ (2006) Biogeographic areas and the transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistics analyses of the entomofauna. Annual Rev Entomol 5:467–494. doi:10.1146/annurev.ento.50.071803.130447

    Article  Google Scholar 

  • Neufeld HS, Meinzer FC, Wisdom CS, Sharifi MR, Rundel PW, Neufeld MS, Goldring Y, Cunningham GL (1988) Canopy architecture of Larrea tridentate (DC.) Cov., a desert shrub: foliage orientation and direct beam radiation interception. Oecologia 75:54–60

    Article  PubMed  Google Scholar 

  • Newton MA, Raftery AE (1994) Approximate bayesian inference with the weighted likelihood bootstrap. J R Stat Soc B 56:3–48

    Google Scholar 

  • Nores M (1986) Diez nuevas subespecies de aves provenientes de islas ecológicas argentinas. Hornero 12:262–273

    Google Scholar 

  • Norman ME (2000) Buddlejaceae. Flora neotropica monograph 81. The New York Botanical Garden, Bronx

    Google Scholar 

  • Nylinder S, Cronholm B, de Lange PJ, Walsh N, Anderberg AA (2013) Species tree phylogeny and character evolution in the genus Centipeda (Asteraceae): evidence from DNA sequences from coding and non-coding loci from the plastid and nuclear genomes. Molec Phylogen Evol 68:239–250. doi:10.1016/j.ympev.2013.03.020

    Article  Google Scholar 

  • Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Environm 66:498–532. doi:10.1016/j.jaridenv.2006.01.007

    Article  Google Scholar 

  • Ossa PG, Pérez F, Armesto JJ (2013) Phylogeography of two closely related species of Nolana from the coastal Atacama Desert of Chile: post-glacial population expansions in response to climate fluctuations. J Biogeogr 40:2191–2203. doi:10.1111/jbi.12152

    Article  Google Scholar 

  • Palazzesi L, Barreda VD, Cuitiño JL, Guler MV, Tellería MC, Ventura Santos R (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nat Commun 5:3558. doi:10.1038/ncomms4558

    Article  CAS  PubMed  Google Scholar 

  • Palma RE, Marquet PA, Boric-Bargetto D (2005) Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J Biogeogr 32:1931–1941. doi:10.1111/j.1365-2699.2005.01349.x

    Article  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Molec Biol Evol 5:568–583

    CAS  PubMed  Google Scholar 

  • Pascual R, Ortiz-Jaureguizar E, Prado JL (1996) Land mammals: paradigm for Cenozoic South American geobiotic evolution. Münchner Geowiss Abh A 30:265–319

    Google Scholar 

  • Pennington RT, Dick CW (2010) Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Wiley-Blackwell, Oxford, pp 373–385

    Google Scholar 

  • Pirie MD, Chatrou LW, Mols JB, Erkens RHJ, Oosterhof J (2006) Andean-centred genera in the short branch clade of Annonaceae: testing biogeographical hypothesis using phylogeny reconstruction and molecular dating. J Biogeogr 33:31–46. doi:10.1111/j.1365-2699.2005.01388.x

    Article  Google Scholar 

  • Popp M, Erixon P, Eggens F, Oxelman B (2005) Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae) inferred from low copy nuclear RNA polymerase introns, rDNA, and chloroplast DNA. Syst Bot 30:302–313. doi:10.1600/0363644054223648

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256. doi:10.1093/molbev/msn083

    Article  CAS  PubMed  Google Scholar 

  • Raftery AE (1995) Bayesian model selection in social research. Sociol Methodol 25:111–163

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2009) Tracer, version 1.5. Available at: http://beast.bio.ed.ac.uk/Tracer

  • Ramos VA, Ghiglione MC (2008) Tectonic evolution of the Patagonian Andes. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Oxford, pp 205–226. doi:10.1016/S1571-0866(07)10004-X

    Google Scholar 

  • Ribas CC, Moyle RG, Miyaki CY, Cracraft J (2007) The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc Roy Soc London B Biol Sci 274:2399–2408. doi:10.1098/rspb.2007.0613

    Article  Google Scholar 

  • Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242–2245. doi:10.1126/science.1061421

    Article  CAS  PubMed  Google Scholar 

  • Robbiati FO, Lamarque A, Anton AM, Fortunato RH (2013) Phenetic analysis of the complex Senna fabrisiiS. trichosepala (Leguminosae, Caesalpiniodeae, Aphyllae) based on morphological characters and seed protein electrophoretic profiles. Phytotaxa 145:1–14. doi:10.11646/phytotaxa.145.1.1

    Article  Google Scholar 

  • Robbiati FO, Ariza Espinar L, Anton AM, Fortunato RH (2014a) Lectotypification, synonymy, and a new name in Senna series Aphyllae (Leguminosae: caesalpinioideae). Phytotaxa 162:84–90. doi:10.11646/phytotaxa.162.2.2

    Article  Google Scholar 

  • Robbiati FO, Anton AM, Fortunato RH (2014b) A new synonym in Senna, Series Aphyllae (Leguminosae, Caesalpinioideae). Syst Bot 39:1120–1126. doi:10.1600/036364414X683840

    Article  Google Scholar 

  • Robbiati FO, Amarilla LD, Anton AM, Fortunato RH (2017) Phenotypic variation in arid and semiarid zones of southern South American: the case of Senna Series Aphyllae (Fabaceae, Caesalpinioideae). Bot J Linn Soc 183:454–473. doi:10.1093/botlinnean/bow012

    Article  Google Scholar 

  • Roig FA, Roig-Juñent S, Corbalán V (2009) Biogeography of the Monte Desert. J Arid Environm 73:164–172. doi:10.1016/j.jaridenv.2008.07.016

    Article  Google Scholar 

  • Sanín MJ, Kissling WD, Bacon CD, Borchsenius F, Galeano G, Svenning JC, Olivera J, Ramírez R, Trénel P, Pintaud JC (2016) The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: arecaceae) through geographical colonization and climatic niche separation. Bot J Linn Soc 182:303–317. doi:10.1111/boj.12419

    Article  Google Scholar 

  • Schmidt-Jabaily R, Sytsma KJ (2010) Phylogenetics of Puya (Bromeliaceae): placement, major lineages, and evolution of Chilean species. Amer J Bot 97:337–356. doi:10.3732/ajb.0900107

    Article  Google Scholar 

  • Schmidt-Lebuhn AN, de Vos JM, Keller B, Conti E (2012) Phylogenetic analysis of Primula section Primula reveals rampant non-monophyly among morphologically distinct species. Molec Phylogen Evol 65:23–34. doi:10.1016/j.ympev.2012.05.015

    Article  Google Scholar 

  • Spichiger R, Calenge C, Bise B (2004) Geographical zonation in the Neotropics of tree species characteristic of the Paraguay-Paraná Basin. J Biogeogr 31:1489–1501. doi:10.1111/j.1365-2699.2004.01071.x

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evo 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Taylor DW (1991) Paleobiogeographic relationships of Andean angiosperms of Cretaceous to Plioceneage. Palaeogeogr Palaeoclimatol Palaeoecol 88:69–84

    Article  Google Scholar 

  • van der Hammen T, Clef AM (1986) Development of the high Andean páramo flora and vegetation. In: Vuilleumier F, Monasterio M (eds) High tropical altitude biogeography. Oxford University Press, New York, pp 153–201

    Google Scholar 

  • Verboom GA, Linder HP, Stock WD (2003) Phylogenetics of the grass genus Ehrharta: evidence for radiation in the summer-arid zone of the South African Cape. Evolution 57:1008–1021. doi:10.1554/00143820(2003)057[1008:POTGGE]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Viruel J, Catalán P, Segarra-Moragues JG (2012) Disrupted phylogeographical microsatellite and chloroplast DNA patterns indicate a vicariance rather than long-distance dispersal origin for the disjunct distribution of the Chilean endemic Dioscorea biloba (Dioscoreaceae) around the Atacama Desert. J Biogeogr 39:1073–1085. doi:10.1111/j.1365-2699.2011.02658.x

    Article  Google Scholar 

  • Volkheimer W (1971) Aspectos paleoclimatológicos del terciario argentino. Revista  Mus Argent Ci Nat 18:172–190

    Google Scholar 

  • von Hagen KB, Kadereit JW (2003) The diversification of Halenia (Gentianaceae): ecological opportunity versus key innovation. Evolution 57:2507–2518

    Article  Google Scholar 

  • Ward D (2009) The biology of desert. University Press, Oxford

    Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic, Boston, pp 265–296. doi:10.1007/978-1-4615-5419-6

    Chapter  Google Scholar 

  • Werneck FP (2011) The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quatern Sci Rev 30:1630–1648. doi:10.1016/j.quascirev.2011.03.009

    Article  Google Scholar 

  • Yu Y, Harris AJ, Blair C, He XJ (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molec Phylogen Evol 87:46–49. doi:10.1016/j.ympev.2015.03.008

    Article  Google Scholar 

  • Yule GU (1925) A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philos Trans Roy Soc London B Biol Sci 213:21–87

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the curators of the herbaria cited under Materials and methods for permission to study and/or loans of specimens, to Dr. Leonardo Amarilla for methodological suggestions, to Dr. Horacio Cantiello for critical reading of the manuscript, to Mr. Marcelo Gritti to help with the preparation of the illustration and to Lic. Luciana Caeiro and Dra. Daniela Tosto for technical laboratory assistance. We also thanks to Dra. Jimena Nores, Ing. Mariela Fabbroni, Dr. José Pensiero and Mr. Gustavo Bertone for provided the photograph of S. aphylla, S. rigidicaulis, S. crassiramea and S. acanthoclada, respectively, and two anonymous reviewers for valuable and constructive comments on previous versions of the manuscript. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; fellowship to F.O.R.; Grants PIP 112-200801-00323 and 11220080101557), FONCyT (PICT 2014-1095) and by Instituto Nacional de Tecnología Agropecuaria (INTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico O. Robbiati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Michal Ronikier.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Biogeographic distribution, voucher information and Genbank accessions of the samples used in this study. Bold code represents generated sequences in this work. Bold taxa are those used in phylogenetic analyses.

Online Resource 2. Primer sequences for amplification and sequencing of ITS and plastid DNA regions used in this study.

Online Resource 3. Alignment used to produce phylogeny.

Online Resource 4. Phylogenetic tree obtained from parsimony analysis of combined ITS and plastid DNA sequences showing relationships of Senna ser. Aphyllae.

Online Resource 5. Graphical representation of ancestral distributions for genus Senna obtained by S-DIVA analysis, indicated by the pies with different colors and proportions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robbiati, F.O., Anton, A., Marazzi, B. et al. The evolutionary history of Senna ser. Aphyllae (Leguminosae–Caesalpinioideae), an endemic clade of southern South America. Plant Syst Evol 303, 1351–1366 (2017). https://doi.org/10.1007/s00606-017-1450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1450-7

Keywords

Navigation