Plant Systematics and Evolution

, Volume 303, Issue 9, pp 1251–1270 | Cite as

Plastid genome structure and phylogenomics of Nymphaeales: conserved gene order and new insights into relationships

  • Michael GruenstaeudlEmail author
  • Lars Nauheimer
  • Thomas Borsch
Original Article


The plastid genomes of early-diverging angiosperms were among the first land plant plastomes investigated. Despite their importance to understanding angiosperm evolution, no investigation has so far compared gene content or gene synteny of these plastid genomes with a focus on the Nymphaeales. Here, we report an evaluation and comparison of gene content, gene synteny and inverted repeat length for a set of 15 plastid genomes of early-diverging angiosperms. Seven plastid genomes of the Nymphaeales were newly sequenced for this investigation. We compare gene order and inverted repeat (IR) length across all genomes, review the gene annotations of previously published genomes, generate a multi-gene alignment of 77 plastid-encoded genes and reconstruct the phylogenetic relationships of the taxa under study. Our results show that gene content and synteny are highly conserved across early-diverging angiosperms: All species analyzed display complete gene synteny when accounting for expansions and contractions of the IRs. This conservation was initially obscured by ambiguous and potentially incorrect gene annotations in previously published genomes. We also report the presence of intact open reading frames across all taxa analyzed. The multi-gene phylogeny displays maximum support for the families Cabombaceae and Hydatellaceae, but no support for a clade of all Nymphaeaceae. It further indicates that the genus Victoria is embedded within Nymphaea. Plastid genomes of Trithuria were found to deviate by numerous substitutions and length changes in the IRs. Phylogenetic analyses further indicate that a previously published plastome named Nymphaea mexicana falls into a clade of N. odorata and should be re-evaluated.


Early-diverging angiosperms Gene annotations Gene order Inverted repeats Nymphaeales Plastid genome 



The authors would like to thank Virginia Duwe of the Botanischer Garten und Botanisches Museum Berlin and Bettina Giesicke of the Freie Universität Berlin for assistance with DNA extractions. The authors also thank Susan Mbedi of the Berlin Center for Genomics in Biodiversity Research for assistance with Illumina library preparations. Moreover, the authors would like to thank the gardeners of the Botanischer Garten und Botanisches Museum Berlin for cultivating the water lily living collection in the greenhouses that provided the specimens of the taxa under study. Finally, the authors would like to acknowledge the high-performance computing service of the ZEDAT of the Freie Universität Berlin for providing allocations of computing time. This investigation was supported by a start-up grant (Initiativmittel der Forschungskommission) of the Freie Universität Berlin to MG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2017_1436_MOESM1_ESM.pdf (95 kb)
Online Resource 1 Species name, taxonomic position, place of publication, GenBank accession number and other associated information for each of the 15 plastid genomes analyzed. (PDF 95 kb)
606_2017_1436_MOESM2_ESM.pdf (83 kb)
Online Resource 2 Overview of read number, mean read length, coverage depth, contig number, contig length and other assembly statistics of plastid genomes that were newly-generated for this investigation. (PDF 82 kb)
606_2017_1436_MOESM3_ESM.pdf (1.2 mb)
Online Resource 3 Circular plastome maps of Nymphaea alba (KU234277), Barclaya longifolia (KY284156), Nymphaea ampla (KU189255), Nymphaea jamesoniana (NC_031826), Victoria cruziana (KY001813), Brasenia schreberi (NC_031343) and Cabomba caroliniana (KT705317). (PDF 1194 kb)
606_2017_1436_MOESM4_ESM.pdf (89 kb)
Online Resource 4 Individual partitions and their best-fitting nucleotide substitution models of the four data partitioning strategies. (PDF 88 kb)
606_2017_1436_MOESM5_ESM.pdf (8.7 mb)
Online Resource 5 Alignment of the hypothetical gene ycf15 across the study taxa. (PDF 8906 kb)
606_2017_1436_MOESM6_ESM.pdf (9.3 mb)
Online Resource 6 Alignment of hypothetical gene ycf68 across the study taxa. (PDF 9564 kb)
606_2017_1436_MOESM7_ESM.pdf (311 kb)
Online Resource 7 Alignment of the open reading frame orf42 across the study taxa. (PDF 311 kb)
606_2017_1436_MOESM8_ESM.pdf (225 kb)
Online Resource 8 Alignment of the open reading frame orf56 across the study taxa. (PDF 225 kb)
606_2017_1436_MOESM9_ESM.pdf (734 kb)
Online Resource 9 Best ML trees inferred from the multi-gene dataset of 77 plastid-encoded genes under four different data partitioning strategies. (PDF 733 kb)


  1. Biswal DK, Debnath M, Kumar S, Tandon P (2012) Phylogenetic reconstruction in the order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase k (matK) as a potential marker for DNA bar coding. BMC Bioinform 13(Suppl 17):S26. doi: 10.1186/1471-2105-13-S17-S26 Google Scholar
  2. Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnTtrnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576. doi: 10.1046/j.1420-9101.2003.00577.x CrossRefPubMedGoogle Scholar
  3. Borsch T, Hilu KW, Wiersema JH, Löhne C, Barthlott W, Wilde V (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes in the chloroplast trnTtrnF region. Int J Pl Sci 168:639–671. doi: 10.1086/513476 CrossRefGoogle Scholar
  4. Borsch T, Löhne C, Wiersema J (2008) Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon 57:1052–1081Google Scholar
  5. Borsch T, Löhne C, Mbaye MS, Wiersema J (2011) Towards a complete species tree of Nymphaea: shedd, its relationships to the Australian waterlilies. Telopea 13:193–217CrossRefGoogle Scholar
  6. Borsch T, Wiersema JW, Hellquist CB, Löhne C, Govers K (2014) Speciation in North American water lilies: evidence for the hybrid origin of the newly discovered Canadian endemic Nymphaea loriana sp. nov. (Nymphaeaceae) in a past contact zone. Botany 92:867–882. doi: 10.1139/cjb-2014-0060 CrossRefGoogle Scholar
  7. Cai Z, Guisinger M, Kim H-G, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Molec Evol 67:696–704. doi: 10.1007/s00239-008-9180-7 CrossRefPubMedGoogle Scholar
  8. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. doi: 10.1186/1471-2105-10-421 CrossRefGoogle Scholar
  9. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molec Biol Evol 23:2175–2190. doi: 10.1093/molbev/msl089 CrossRefPubMedGoogle Scholar
  10. Cusimano N, Wicke S (2016) Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. New Phytol 210:680–693. doi: 10.1111/nph.13784 CrossRefPubMedGoogle Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Meth 9:772. doi: 10.1038/nmeth.2109 CrossRefGoogle Scholar
  12. Do HDK, Kim JS, Kim J-H (2013) Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Gene 530:229–235. doi: 10.1016/j.gene.2013.07.100 CrossRefPubMedGoogle Scholar
  13. Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Pl Sci 161:S121–S153. doi: 10.1086/317578 CrossRefGoogle Scholar
  14. Drew BT, Ruhfel BR, Smith SA, Moore MJ, Briggs BG, Gitzendanner MA, Soltis PS, Soltis DE (2014) Another look at the root of the angiosperms reveals a familiar tale. Syst Biol 63:368–382. doi: 10.1093/sysbio/syt108 CrossRefPubMedGoogle Scholar
  15. Gordon A (2014) FASTX-Toolkit. Available at:
  16. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003a) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Molec Biol Evol 20:1499–1505. doi: 10.1093/molbev/msg159 CrossRefPubMedGoogle Scholar
  17. Goremykin V, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003b) The chloroplast genome of the “basal” angiosperm Calycanthus fertilis—structural and phylogenetic analyses. Pl Syst Evol 242:119–135. doi: 10.1007/s00606-003-0056-4 CrossRefGoogle Scholar
  18. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Molec Biol Evol 21:1445–1454. doi: 10.1093/molbev/msh147 CrossRefPubMedGoogle Scholar
  19. Goremykin VV, Nikiforova SV, Biggs PJ, Zhong B, Delange P, Martin W, Woetzel S, Atherton RA, McLenachan PA, Lockhart PJ (2013) The evolutionary root of flowering plants. Syst Biol 62:50–61. doi: 10.1093/sysbio/sys070 CrossRefPubMedGoogle Scholar
  20. Goremykin VV, Nikiforova SV, Cavalieri D, Pindo M, Lockhart P (2015) The root of flowering plants and total evidence. Syst Biol 64:879–891. doi: 10.1093/sysbio/syv028 CrossRefPubMedGoogle Scholar
  21. Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Molec Biol Evol 28:583–600. doi: 10.1093/molbev/msq229 CrossRefPubMedGoogle Scholar
  22. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Molec Evol 66:350–361. doi: 10.1007/s00239-008-9086-4 CrossRefPubMedGoogle Scholar
  24. Iles WJD, Lee C, Sokoloff DD, Remizowa MV, Yadav SR, Barrett MD, Barrett RL, Macfarlane TD, Rudall PJ, Graham SW (2014) Reconstructing the age and historical biogeography of the ancient flowering-plant family Hydatellaceae (Nymphaeales). BMC Evol Biol 14:102. doi: 10.1186/1471-2148-14-102 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, advances in photosynthesis and respiration. Springer, Berlin, pp 103–126CrossRefGoogle Scholar
  26. Jansen RK, Cai Z, Raubeson LA, Daniell H, DePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci 104:19369–19374. doi: 10.1073/pnas.0709121104 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: 10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kuroda H, Suzuki H, Kusumegi T, Hirose T, Yukawa Y, Sugiura M (2007) Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine–Dalgarno sequence in tobacco chloroplasts. Pl Cell Physiol 48:1374–1378. doi: 10.1093/pcp/pcm097 CrossRefGoogle Scholar
  29. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molec Biol Evol 34:772. doi: 10.1093/molbev/msw260 Google Scholar
  30. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi: 10.1186/gb-2009-10-3-r25 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leebens-Mack J, Raubeson LA, Liying C, Kuehl JV, Fourcade MH, Chhumley TW, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Molec Biol Evol 22:1948–1963. doi: 10.1093/molbev/msi191 CrossRefPubMedGoogle Scholar
  32. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925. doi: 10.1080/106351501753462876 CrossRefPubMedGoogle Scholar
  33. Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom 13:715. doi: 10.1186/1471-2164-13-715 CrossRefGoogle Scholar
  34. Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotropic orchid Neottia nidus-avis. Genome Bio Evol 3:1296–1303. doi: 10.1093/gbe/evr102 CrossRefGoogle Scholar
  35. Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Molec Biol Evol 22:317–332. doi: 10.1093/molbev/msi019 CrossRefPubMedGoogle Scholar
  36. Löhne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163. doi: 10.1111/j.1095-8339.2007.00659.x CrossRefGoogle Scholar
  37. Löhne C, Yoo M-J, Borsch T, Wiersema J, Wilde V, Bell CD, Barthlott W, Soltis DE, Soltis PS (2008) Biogeography of Nymphaeales: extant patterns and historical events. Taxon 57:1123–1146Google Scholar
  38. Löhne C, Wiersema JH, Borsch T (2009) The unusual Ondinea, actually just another Australian water-lily of Nymphaea subg. Anecphya (Nymphaeaceae). Willdenowia 39:55–58. doi: 10.3372/wi.39.39104 CrossRefGoogle Scholar
  39. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression datasets. Nucl Acids Res 41:W575–W581. doi: 10.1093/nar/gkt289 CrossRefPubMedPubMedCentralGoogle Scholar
  40. McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (2007) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Pl Biol 7:57. doi: 10.1186/1471-2229-7-57 CrossRefGoogle Scholar
  41. Michaud M, Cognat V, Duchene A-M, Marechal-Drouard L (2011) A global picture of tRNA genes in plant genomes. Pl J 66:80–93. doi: 10.1111/j.1365-313X.2011.04490.x CrossRefGoogle Scholar
  42. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368. doi: 10.1073/pnas.0708072104 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M, Vandeventer A, Horn JW, Dhingra A, Brockington SF, Latvis M, Ramdial J, Alexandre R, Piedrahita A, Xi Z, Davis CC, Soltis PS, Soltis DE (2011) Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int J Pl Sci 172:541–558. doi: 10.1086/658923 CrossRefGoogle Scholar
  44. Müller KF (2005) SeqState—primer design and sequence statistics for phylogenetic DNA datasets. Appl Bioinformatics 4:65–69. doi: 10.2165/00822942-200504010-00008 CrossRefPubMedGoogle Scholar
  45. Müller KF, Borsch T, Hilu KW (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F and rbcL in basal angiosperms. Molec Phylogen Evol 41:99–117. doi: 10.1016/j.ympev.2006.06.017 CrossRefGoogle Scholar
  46. Müller J, Müller KF, Neinhuis C, Quandt D (2007) PhyDE—phylogenetic data editor. Available at:
  47. Ohtani K, Yamamoto H, Akimitsu K (2002) Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. Proc Natl Acad Sci USA 99:2439–2444. doi: 10.1073/pnas.042448499 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93. doi: 10.1038/301092a0 CrossRefGoogle Scholar
  49. Rambaut A, Suchard MA, Drummond AJ (2014) Tracer v1.6. Available at:
  50. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genom 8:174. doi: 10.1186/1471-2164-8-174 CrossRefGoogle Scholar
  51. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  52. Rudall PJ, Sokoloff DD, Remizowa MV, Conran JG, Davis JI, Macfarlane TD, Stevenson DW (2007) Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Amer J Bot 94:1073–1092. doi: 10.3732/ajb.94.7.1073 CrossRefGoogle Scholar
  53. Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms—inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. doi: 10.1186/1471-2148-14-23 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Saarela JM, Rai HS, Doyle JA, Endress PK, Methews S, Marchant AD, Briggs BG, Graham SW (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446:312–315. doi: 10.1038/nature05612 CrossRefPubMedGoogle Scholar
  55. Schmitz-Linneweber C, Maier RM, Alcaraz J-P, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Pl Molec Biol 45:307–315. doi: 10.1023/A:1006478403810 CrossRefGoogle Scholar
  56. Schneider EL, Williamson PS (1993) Nymphaeaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) Flowering plants—Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families. Springer, Berlin, pp 486–493Google Scholar
  57. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugital M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedPubMedCentralGoogle Scholar
  58. Silva SR, Diaz YCA, Penha HA, Pinheiro DG, Fernandes CC, Miranda VFO, Michael TP, Varani AM (2016) The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS ONE 11:1–29. doi: 10.1371/journal.pone.0165176 Google Scholar
  59. Simmons MP (2016) Mutually exclusive phylogenomic inferences at the root of the angiosperms: Amborella is supported as sister and observed variability is biased. Cladistics (First Online). doi: 10.1111/cla.12177 Google Scholar
  60. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381CrossRefPubMedGoogle Scholar
  61. Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, Sonstebo JH, Ims RA, Yoccoz NG, Taberlet P (2009) Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures. Frontiers Zool 6:16. doi: 10.1186/1742-9994-6-16 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404. doi: 10.1038/46528 CrossRefPubMedGoogle Scholar
  63. Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771. doi: 10.1080/10635150802429642 CrossRefPubMedGoogle Scholar
  65. Stevens PF (2017) Angiosperm phylogeny website. Version 13 [last update 05/02/2017]. Available at:
  66. Sun L, Fang L, Zhang Z, Chang X, Penny D (2016) Chloroplast phylogenomic inference of green algae relationships. Sci Rep 6:20528. doi: 10.1038/srep20528 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Walker JF, Jansen RK, Zanis MJ, Emery NC (2015) Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. Amer J Bot 102:1751–1752. doi: 10.3732/ajb.1500299 CrossRefGoogle Scholar
  68. Weng M-L, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molec Biol Evol 31:645–659. doi: 10.1093/molbev/mst257 CrossRefPubMedGoogle Scholar
  69. Wicke S, Schneeweiss G, dePamphilis C, Müller K, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Pl Molec Biol 76:273–297. doi: 10.1007/s11103-011-9762-4 CrossRefGoogle Scholar
  70. Wicke S, Muller KF, de Pamphilis CW, Quandt D, Wickett NJ (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Pl Cell 25:3711–3725. doi: 10.1105/tpc.113.113373 CrossRefGoogle Scholar
  71. Wicke S, Schäferhoff B, Depamphilis CW, Müller KF (2014) Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Molec Biol Evol 31:529–545. doi: 10.1093/molbev/mst261 CrossRefPubMedGoogle Scholar
  72. Woloszynska M, Bocer T, Mackiewicz P, Janska H (2004) A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus. Pl Molec Biol 56:811–820. doi: 10.1007/s11103-004-5183-y CrossRefGoogle Scholar
  73. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. doi: 10.1093/bioinformatics/bth352 CrossRefPubMedGoogle Scholar
  74. Yang J-B, Li D-Z, Li H-T (2014) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Molec Ecol Resources 14:1024–1031. doi: 10.1111/1755-0998.12251 CrossRefGoogle Scholar
  75. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang J, Ruhlman TJ, Sabir JSM, Blazier JC, Weng M-L, Park S, Jansen RK (2016) Coevolution between nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity. Genome Biol Evol 8:622–634. doi: 10.1093/gbe/evw033 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Michael Gruenstaeudl
    • 1
    Email author
  • Lars Nauheimer
    • 2
  • Thomas Borsch
    • 1
    • 3
    • 4
  1. 1.Institut für Biologie, Systematische Botanik und PflanzengeographieFreie Universität BerlinBerlinGermany
  2. 2.Australian Tropical HerbariumCairnsAustralia
  3. 3.Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinBerlinGermany
  4. 4.Berlin Center for Genomics in Biodiversity Research (BeGenDiv)BerlinGermany

Personalised recommendations