Plant Systematics and Evolution

, Volume 303, Issue 7, pp 901–914 | Cite as

Despite admixing two closely related Carex species differ in their regional morphological differentiation

  • Lisanna Schmidt
  • Markus Fischer
  • Bernhard Schmid
  • Tatjana Oja
Original Article


Rarer species are expected to show stronger geographic differentiation than more common species. However, if rare species hybridize with common species, differentiation may be quite similar between the two due to genetic admixing via backcrossing. We studied morphological differentiation of plants of 21 natural populations of the more common Carex flava, 16 of the less common Carex viridula and 6 of their hybrids from 27 sites in three climatically different regions, Estonia, Lowland Switzerland and Highland Switzerland. Univariate ANOVA and multivariate principal component analysis of 14 morphological characters, describing both vegetative and reproductive characters, allowed to clearly distinguish C. flava from C. viridula. Carex viridula populations showed stronger regional variation than C. flava. Hybrids had both intermediate and transgressive characters in Switzerland and Estonia. On average, hybrids from Lowland Switzerland were more similar to Swiss C. flava than to C. viridula, while hybrids from Estonia were morphologically intermediate between plants of Estonian populations of the parental species. The results suggest that within-region genetic admixing between species has limited potential to lead to region-specific similarity between species, at least in our model system of the C. flava complex. We conclude that C. flava and C. viridula are clearly distinct species and that, despite hybridization, geographic differentiation is more pronounced in the less common C. viridula than in C. flava.


Admixing Carex flava complex Geographic differentiation Hybridization Morphology 

Supplementary material

606_2017_1420_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 82 kb)


  1. Agbo CU, da Silva JAT (2014) Expression of heterosis and heritability in vegetative traits of Gongronema latifolia. Open J Genet 4:146–156. doi:10.4236/ojgen.2014.42015 CrossRefGoogle Scholar
  2. Anderson E (1949) Introgressive hybridization, 1st edn. Wiley, New YorkGoogle Scholar
  3. Arnold ML (1992) Natural hybridization as an evolutionary process. Annual Rev Ecol Syst 23:237–261. doi:10.1146/ CrossRefGoogle Scholar
  4. Arnold ML (1994) Natural hybridization and Louisiana irises. Bioscience 44:141–147. doi:10.2307/1312250 CrossRefGoogle Scholar
  5. Arnold ML (2006) Evolution through genetic exchange, 1st edn. Oxford University Press Inc., New YorkGoogle Scholar
  6. Baur B, Schmid B (1996) Spatial and temporal patterns of genetic diversity within species. In: Gaston KJ (ed) Biodiversity: a biology of numbers and difference. Blackwell, Oxford, pp 169–201Google Scholar
  7. Blackstock N (2007) A reassessment of the yellow sedges Carex flava L. agg. (Cyperaceae) in the British Isles. PhD Thesis, University of Lancaster, LancasterGoogle Scholar
  8. Blackstock N, Ashton PA (2010) Genetic markers and morphometric analysis reveal past hybridization and introgression in putative Carex flava L. s. str. (Cyperaceae) hybrid populations. Pl Syst Evol 287:37–47. doi:10.1007/s00606-010-0287-0 CrossRefGoogle Scholar
  9. Brennan AC, Hiscock SJ, Abbott RJ (2016) Genomic architecture of phenotypic divergence between two hybridizing plant species along an elevational gradient. AoB Plants 8:plw022. doi:10.1093/aobpla/plw022 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cayouette J, Catling PM (1992) Hybridization in the genus Carex with special reference to North America. Bot Rev 58:351–440. doi:10.1007/BF02858773 CrossRefGoogle Scholar
  11. Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environresponses of climatic races of Achillea. Carnegie Institution, WashingtonGoogle Scholar
  12. Crins WJ, Ball PW (1989a) Taxonomy of the Carex flava complex (Cyperaceae) in North America and northern Eurasia. I. Numerical taxonomy and character analysis. Canad J Bot 67:1032–1047. doi:10.1139/b89-137 CrossRefGoogle Scholar
  13. Crins WJ, Ball PW (1989b) Taxonomy of the Carex flava complex (Cyperaceae) in North America and northern Eurasia. II. Taxonomic treatment. Canad J Bot 67:1048–1065. doi:10.1139/b89-138 CrossRefGoogle Scholar
  14. Davies EW (1953a) An experimental taxonomic study of some species of Carex with special reference to the C. flava aggregate. PhD Thesis, University of London, LondonGoogle Scholar
  15. Davies EW (1953b) Notes on Carex flava and its allies. III. The taxonomy and morphology of the British representatives. Watsonia 3:74–79Google Scholar
  16. Davies EW (1953c) Notes on Carex flava and its allies. IV. Geographic distribution. Watsonia 3:80–84Google Scholar
  17. Davies EW (1955) The cytogenetics of Carex flava and its allies. Watsonia 3:129–137Google Scholar
  18. Ducarme V, Wesselingh RA (2005) Detecting hybridization in mixed populations of Rhinanthus minor and Rhinanthus angustifolius. Folia Geobot 40:151–161. doi:10.1007/BF02803231 CrossRefGoogle Scholar
  19. Egorova TV (1999) The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St.-Petersburg State Chemical Pharmaceutical Academy, St.-Petersburg & Missouri Botanical Garden Press, St. LouisGoogle Scholar
  20. Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Galbany-Casals M, Carnicero-Campmany P, Blanco-Moreno JM, Smissen RD (2012) Morphological and genetic evidence of contemporary intersectional hybridisation in Mediterranean Helichrysum (Asteraceae, Gnaphalieae). Pl Biol 14:789–800. doi:10.1111/j.1438-8677.2012.00568.x CrossRefGoogle Scholar
  22. Hahn MA, Rieseberg LH (2016) Genetic admixture and heterosis may enhance the invasiveness of common ragweed. Evol Appl 9:1–10. doi:10.1111/eva.12445 CrossRefGoogle Scholar
  23. Hall D, Luquez V, Garcia VM, St Onge KR, Jansson S, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860. doi:10.1111/j.1558-5646.2007.00230.x CrossRefPubMedGoogle Scholar
  24. Harper JL (1977) Population biology of plants. Academic Press, CambridgeGoogle Scholar
  25. Hedrén M (1990) Problems in Carex jemtlandica and C. bergrothii (Cyperaceae) in Sweden. Sommerfeltia 11:109–115Google Scholar
  26. Hedrén M (2002) Patterns of allozyme and morphological differentiation in the Carex flava complex (Cyperaceae) in Fennoscandia. Nordic J Bot 22:257–301. doi:10.1111/j.1756-1051.2002.tb01373.x CrossRefGoogle Scholar
  27. Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423. doi:10.1111/j.1469-8137.2004.01253.x CrossRefPubMedGoogle Scholar
  28. Hultén E, Fries M (1986) Atlas of North European vascular plants (north of the Tropic of Cancer). Koeltz scientific books, KönigsteinGoogle Scholar
  29. Janyszek M, Jagodziński Am, Janyszek S, Wrońska-Pilarek D (2008) Morphological variability of Carex spicata Huds. utricles among plant communities. Flora 203:386–395. doi:10.1016/j.flora.2007.06.007 CrossRefGoogle Scholar
  30. Jiménez-Mejías P, Martín-Bravo S, Luceño M (2012) Systematics and taxonomy of Carex sect. Ceratocystis (Cyperaceae) in Europe: a molecular and cytogenetic approach. Syst Bot 37:382–398. doi:10.1600/036364412X635449 CrossRefGoogle Scholar
  31. Jiménez-Mejías P, Luceño M, Martín-Bravo S (2014) Species boundaries within the southwest Old World populations of the Carex flava group (Cyperaceae). Syst Bot 39:117–131. doi:10.1600/036364414X677973 CrossRefGoogle Scholar
  32. Jonas CS, Geber MA (1999) Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. Amer J Bot 86:333–343. doi:10.2307/2656755 CrossRefGoogle Scholar
  33. Koopman J (2011) Carex Europaea: the genus Carex L. (Cyperaceae) in Europe, 1: accepted names, hybrids, synonyms, distribution, chromosome numbers. Margraf Publishers, WeikersheimGoogle Scholar
  34. Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer-Verlag, BerlinCrossRefGoogle Scholar
  35. Kuchel SD, Bruederle LP (2000) Allozyme data support a Eurasian origin for Carex viridula subsp. viridula var. viridula (Cyperaceae). Madroño 47:147–158Google Scholar
  36. Kukk T, Kull T (2005) Eesti taimede levikuatlas (Atlas of the Estonian flora). Estonian University of Life Sciences, TartuGoogle Scholar
  37. Lamont BB, He T, Enright NJ, Krauss SL, Miller BP (2003) Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 16:551–557. doi:10.1046/j.1420-9101.2003.00548.x CrossRefPubMedGoogle Scholar
  38. Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Molec Ecol 18:2228–2242. doi:10.1111/j.1365-294X.2009.04137.x CrossRefPubMedGoogle Scholar
  39. Lexer C, Joseph JA, van Loo M, Barbará T, Heinze B, Bartha D, Castiglione S, Fay MF, Buerkle CA (2010) Genomic admixture analysis in European Populus spp. reveals unexpected patterns of reproductive isolation and mating. Genetics 186:699–712. doi:10.1534/genetics.110.118828 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lowe AJ, Abbott RJ (2003) A new British species, Senecio eboracensis (Asteraceae), another hybrid derivative of S. vulgaris L. and S. squalidus L. Watsonia 24:375–388Google Scholar
  41. Pykälä J, Toivonen H (1994) Taxonomy of the Carex flava complex (Cyperaceae) in Finland. Nordic J Bot 14:173–191. doi:10.1111/j.1756-1051.1994.tb00583.x CrossRefGoogle Scholar
  42. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: Accessed Apr 2017
  43. Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389. doi:10.1146/annurev.ecolsys.28.1.359 CrossRefGoogle Scholar
  44. Rieseberg LH, Ellstrand NC, Arnold M (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Pl Sci 12:213–241. doi:10.1080/713608045 Google Scholar
  45. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372. doi:10.1038/sj.hdy.6886170 CrossRefPubMedGoogle Scholar
  46. Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242. doi:10.1016/j.tree.2014.02.003 CrossRefPubMedGoogle Scholar
  47. Rosenthal DM, Schwarzbach AE, Donovan LA, Raymond O, Rieseberg LH (2002) Phenotypic differentiation between three ancient hybrid taxa and their parental species. Int J Pl Sci 163:387–398. doi:10.1086/339237 CrossRefGoogle Scholar
  48. Salo V, Pykälä J, Toivonen H (1994) Achene epidermis in the Carex flava complex (Cyperaceae) studied by scanning electron microscopy. Ann Bot Fenn 331:45–52Google Scholar
  49. Santamaría L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84:2454–2461. doi:10.1890/02-0431 CrossRefGoogle Scholar
  50. Schmid BW (1980) Carex flava L. sl im Lichte der r-Selektion. PhD Thesis, University of Zurich, ZurichGoogle Scholar
  51. Schmid BW (1981) Die Verbreitung der Artengruppe Carex flava L. s.l. in der Schweiz. Bot Helv 91:3–8Google Scholar
  52. Schmid BW (1982) Karyology and hydridization in the Carex flava complex in Switzerland. Feddes Repert 93:23–59. doi:10.1002/fedr.19820930103 CrossRefGoogle Scholar
  53. Schmid BW (1983) Notes on the nomenclature and taxonomy of the Carex flava group in Europe. Watsonia 14:309–319Google Scholar
  54. Schmid BW (1984a) Life histories in clonal plants of the Carex flava group. J Ecol 72:93–114. doi:10.2307/2260008 CrossRefGoogle Scholar
  55. Schmid BW (1984b) Niche width and variation within and between populations in colonizing species (Carex flava group). Oecologia 63:1–5. doi:10.1007/BF00379777 CrossRefPubMedGoogle Scholar
  56. Schmid BW (1986a) Colonizing plants with persistent seeds and persistent seedlings (Carex flava group). Bot Helv 96:19–26Google Scholar
  57. Schmid BW (1986b) Patterns of variation and population structure in the Carex flava group. Symb Bot Upsal 27:113–126Google Scholar
  58. Schmid BW (1992) Phenotypic variation in plants. Evol Trends Pl 6:45–60Google Scholar
  59. Stebbins GL (1959) The role of hybridization in evolution. Proc Amer Philos Soc 103:231–251Google Scholar
  60. Stoeva MP, Stepankova J (1990) Variation patterns within the Carex flava agg. in Bulgaria and Czechoslovakia. Preslia 62:1–23Google Scholar
  61. Toom M, Liira J, Kull T (2016) Tarnad—the genus Carex in Estonia, 1st edn. University of Tartu, TartuGoogle Scholar
  62. Vonk DH (1979) Biosystematic studies of the Carex flava complex I. Flowering. Pl Biol 28:1–20. doi:10.1111/j.1438-8677.1979.tb01153.x Google Scholar
  63. Wagner WH (1969) The role and taxonomic treatment of hybrids. Bioscience 19:785–795. doi:10.2307/1294787 CrossRefGoogle Scholar
  64. West-Eberhard MJ (2003) Developmental plasticity and evolution, 1st edn. Oxford University Press, New YorkGoogle Scholar
  65. Więcław H (2011) Morphological variability of the Carex oederi sl inflorescence. Biodivers Res Conservation 21:13–18. doi:10.2478/v10119-011-0003-0 Google Scholar
  66. Więcław H (2014) Carex flava agg. (section Ceratocystis, Cyperaceae) in Poland: taxonomy, morphological variation, and soil conditions. Biodivers Res Conservation 33:3–51. doi:10.2478/biorc-2014-0001 Google Scholar
  67. Więcław H, Podlasinski M (2013) Morphological differences between natural populations of Carex viridula (Cyperaceae): effects of soil conditions. Ann Bot Fenn 50:13–22. doi:10.5735/085.050.0102 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Botany, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  2. 2.Institute of Plant SciencesUniversity of BernBernSwitzerland
  3. 3.Botanical GardenUniversity of BernBernSwitzerland
  4. 4.Oeschger Centre for Climate Change ResearchUniversity of BernFalkenplatz 16Switzerland
  5. 5.Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland

Personalised recommendations