Advertisement

Plant Systematics and Evolution

, Volume 303, Issue 6, pp 727–744 | Cite as

Multilocus phylogenetic reconstruction informing polyploid relationships of Aconitum subgenus Lycoctonum (Ranunculaceae) in China

  • Hanghui KongEmail author
  • Yu Zhang
  • Yu Hong
  • Michael S. Barker
Original Article

Abstract

Polyploidization has long been recognized as one of the most important driving forces of plant evolution. Aconitum subgenus Lycoctonum (Ranunculaceae) has a wide distribution range and well-known background of polyploidy, thereby providing a potentially valuable model to explore polyploid origin and evolutionary history. However, the phylogeny of subg. Lycoctonum has not yet been completely resolved. In the current study, 29 species including diploid, tetraploid and hexaploid species were sampled in subg. Lycoctonum. Using four cpDNA regions (ndhF-trnL, psbA-trnH, psbD-trnT and trnT-L) and two nrDNA regions (internal transcribed spacer, ITS, and external transcribed spacer, ETS), phylogenetic relationship was first reconstructed for the polyploid species within subg. Lycoctonum. In combination with nuclear diversification rate estimation, cpDNA haplotype network, ancestral area reconstruction as well as morphological and karyotypic evidence, potential origin and divergence time were further assessed among the polyploid species. Hybridization was inferred for A. angustius and A. finetianum was suggested to be the potential maternal progenitor, due to their close phylogenetic relationship, highly similar morphologies and overlapping distribution range. Local origin was inferred for tetraploids in the Hengduan Mountains (HDM) with eight groups of chromosomes of four homeologous, which diverged approximately 3.00 Ma in the same period of the orogeny of the HDM. The hexaploid A. apetalum was inferred to suffer from geographical isolation due to the formation of the Qinghai–Tibetan Plateau (QTP) and the HDM. Hybridization and heterogeneous habitats in the HDM were suggested to play an important role in the polyploidization in subg. Lycoctonum.

Keywords

Aconitum subgenus Lycoctonum Heterogeneous habitats Hybridization Phylogenetic reconstruction Polyploids 

Notes

Acknowledgements

We would like to thank Prof. Youngdong Kim for providing the samples of Aconitum longecassidatum, A. pseudolaeve and A. quelpaertense from Korea, and Dr. Tetsuo Ohi-Toma for providing the sample of A. pterocaule from Japan. Special thanks to Zheng Li and Anthony Baniaga for helpful suggestions and discussion on the data analyses. Dr. A.J. Harris is thanked for the valuable suggestions on the manuscript.

Sources of funding

This work was supported by the Natural Science Foundation of China (Project No. 31470319), the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (KSCX2-EW-J-28), and the Natural Science Foundation of Guangdong Province, China (Project No. 10151065005000019).

Sample

No specific permits were required for the species of Aconitum subgenus Lycoctonum used in the current study, and all samples were collected by researchers following current Chinese regulations.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2017_1406_MOESM1_ESM.pdf (105 kb)
Supplementary material 1 (PDF 105 kb)
606_2017_1406_MOESM2_ESM.pdf (1.4 mb)
Supplementary material 2(PDF 1416 kb)
606_2017_1406_MOESM3_ESM.pdf (1.6 mb)
Supplementary material 3 (PDF 1611 kb)
606_2017_1406_MOESM4_ESM.pdf (1.4 mb)
Supplementary material 4 (PDF 1425 kb)

References

  1. Abbott RJ, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Linn Soc 82:467–474. doi: 10.1111/j.1095-8312.2004.00333.x CrossRefGoogle Scholar
  2. Aïnouche ML, Baumel A, Salmon A (2004) Spartina anglica C.E. Hubbard: a natural model system for analyzing early evolution changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484. doi: 10.1111/j.1095-8312.2004.00334.x CrossRefGoogle Scholar
  3. Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogen Evol 29:417–434. doi: 10.1016/S1055-7903(03)00208-2 CrossRefPubMedGoogle Scholar
  4. Antonelli A, Sanmartín I (2011) Why are there so many plant species in the Neotropics? Taxon 60:403–414Google Scholar
  5. APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20 CrossRefPubMedGoogle Scholar
  6. Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Pl Biol 15:140–146. doi: 10.1016/j.pbi.2012.03.010 CrossRefGoogle Scholar
  7. Baldwin BG, Markos S (1998) Phylogenetic Utility of the External Transcribed Spacer (ETS) of 18S–26S rDNA: Congruence of ETS and ITS Trees of Calycadenia (Compositae). Molec Phylogen Evol 10:449–463. doi: 10.1006/mpev.1998.0545 CrossRefGoogle Scholar
  8. Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338. doi: 10.1073/pnas.92.25.11331 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Brassac J, Blattner FR (2015) Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst Biol 64:792–808. doi: 10.1093/sysbio/syv035 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Buckler ES, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832PubMedGoogle Scholar
  11. Camacho-García YE, Ornelas-Gatdula E, Gosliner TM, Valdés Á (2014) Phylogeny of the family Aglajidae (Pilsbry, 1895) (Heterobranchia: Cephalaspidea) inferred from mtDNA and nDNA. Molec Phylogen Evol 71:113–126. doi: 10.1016/j.ympev.2013.11.010 CrossRefPubMedGoogle Scholar
  12. Chen FB (1992) H-D event: an important tectonic event of the late Cenozoic in Eastern Asia. Mountain Res 10:195–202Google Scholar
  13. Christin PA, Spriggs E, Osborne CP, Strömberg CAE, Salamin N, Edwards EJ (2014) Molecular dating, evolutionary rates, and the age of the grasses. Syst Biol 63:153–165. doi: 10.1093/sysbio/syt072 CrossRefPubMedGoogle Scholar
  14. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1660. doi: 10.1046/j.1365-294x.2000.01020.x CrossRefPubMedGoogle Scholar
  15. Cui ZJ, Gao QZ, Liu GN, Pan BT, Chen HL (1996) Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau. Sci China, Ser D Earth Sci 39:391–400Google Scholar
  16. Cunningham CW (1997a) Can three incongruence tests predict when data should be combined? Molec Biol Evol 14:733–740. doi: 10.1093/oxfordjournals.molbev.a025813 CrossRefPubMedGoogle Scholar
  17. Cunningham CW (1997b) Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst Biol 46:464–478. doi: 10.1093/sysbio/46.3.464 CrossRefPubMedGoogle Scholar
  18. Deng JB, Drew BT, Mavrodiev EV, Gitzendanner MA, Soltis PS, Soltis DE (2015) Phylogeny, divergence times, and historical biogeography of the angiosperm family Saxifragaceae. Molec Biol Evol 83:86–98Google Scholar
  19. Doyle JJ, Doyle JL, Rausher J, Brown AHD (2004) Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine). New Phytol 161:121–132. doi: 10.1046/j.1469-8137.2003.00949.x CrossRefGoogle Scholar
  20. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88. doi: 10.1371/journal.pbio.0040088 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973. doi: 10.1093/molbev/mss075 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molec Ecol 23:40–69. doi: 10.1111/mec.12581 CrossRefPubMedGoogle Scholar
  23. Escudero M, Hipp AL, Waterway MJ, Valente LM (2012) Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molec Phylogen Evol 63:650–655. doi: 10.1016/j.ympev.2012.02.005 CrossRefPubMedGoogle Scholar
  24. Estep MC, McKain MR, Vela Diaz D, Zhong JS, Hodge JG, Hodkinson TR et al (2014) Allopolyploidy, diversification, and the Miocene grassland expansion. Proc Natl Acad Sci USA 111:15149–15154. doi: 10.1073/pnas.1404177111 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319. doi: 10.1111/j.1096-0031.1994.tb00181.x CrossRefGoogle Scholar
  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefGoogle Scholar
  27. Fortune PM, Pourtau N, Viron N, Aïnouche ML (2008) Molecular phylogeny and reticulate origins of the polyploid Bromus species from section Genea (Poaceae). Amer J Bot 95:454–464. doi: 10.3732/ajb.95.4.454 CrossRefPubMedGoogle Scholar
  28. Gao Q (2009) Taxonomic revision of Aconitum L. subgenus Lycoctonum (DC.) Peterm. (Ranunculaceae) from China. PhD Thesis, Institute of Botany, The Chinese Academy of Sciences, BeijingGoogle Scholar
  29. Gao Q, Ren C, Yang QE (2012) Taxonomic status and distributional range of Aconitum angustius (Ranunculaceae) based on cytological evidence. Nordic J Bot 30:1–13. doi: 10.1111/j.1756-1051.2012.01506.x CrossRefGoogle Scholar
  30. Ge XJ, Zhang LB, Yuan YM, Hao G, Chiang TY (2005) Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by inter-simple sequence repeats (ISSR). Biodivers Conservation 14:849–861. doi: 10.1007/s10531-004-0655-6 CrossRefGoogle Scholar
  31. Grant V (1971) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  32. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  33. Gregory WC (1941) Phylogenetic and cytological studies in the Ranunculaceae Juss. Trans Amer Philos Soc 31:443–521. doi: 10.2307/1005611 CrossRefGoogle Scholar
  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  35. Harmon L, Weir J, Brock C, Glor R, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. doi: 10.1093/bioinformatics/btm538 CrossRefPubMedGoogle Scholar
  36. Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670. doi: 10.1126/science.255.5052.1663 CrossRefPubMedGoogle Scholar
  37. Harrison SP, Yu G, Takahar H, Prentice IC (2001) Palaeovegetation (communications arising): diversity of temperate plants in east Asia. Nature 413:129–130. doi: 10.1038/35093166 CrossRefPubMedGoogle Scholar
  38. Hong Y, Gao Q, Luo Y, Luo JP, Zhang Y, Yuan Q, Yang QE (2016) Karyology of Aconitum subgenus Lycoctonum (Ranunculaceae) from China, with a report of the new base chromosome number x = 6 in the genus Aconitum. Nordic J Bot 34:442–454. doi: 10.1111/njb.00957 CrossRefGoogle Scholar
  39. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  40. Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Trends Ecol Evol 11:152–158. doi: 10.1016/0169-5347(96)10006-9 CrossRefPubMedGoogle Scholar
  41. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267. doi: 10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  42. Jabbour F, Renner SS (2011) Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. Taxon 60:1029–1040Google Scholar
  43. Jabbour F, Renner SS (2012) A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Molec Phylogen Evol 62:928–942. doi: 10.1016/j.ympev.2011.12.005 CrossRefPubMedGoogle Scholar
  44. Jakobsson M, Haggenblad J, Tavaré S, Sāll T, Halldén C, Lind-Halldén C et al (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Molec Biol Evol 23:1217–1231. doi: 10.1093/molbev/msk006 CrossRefPubMedGoogle Scholar
  45. Katoh K, Frith MC (2012) Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28:3144–3146. doi: 10.1093/bioinformatics/bts578 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Kelly LJ, Leitch AR, Clarkson JJ, Knapp S, Chase MW (2013) Reconstructing the complex evolutionary origin of wild alloploid Tobaccos (Nicotiana section Suaveolentes). Evolution 67:80–94. doi: 10.1111/j.1558-5646.2012.01748.x CrossRefPubMedGoogle Scholar
  47. Kim ST, Donoghue MJ (2008) Incongruence between cpDNA and nrITS trees indicates extensive hybridization within Eupersicaria (Polygonaceae). Amer J Bot 95:1122–1135. doi: 10.3732/ajb.0700008 CrossRefPubMedGoogle Scholar
  48. Kreft H, Sommer JH, Barthlott W (2006) The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29:21–30. doi: 10.1111/j.2005.0906-7590.04203.x CrossRefGoogle Scholar
  49. Kurita M (1957) Chromosomes studies in Ranuculaceae V. Karyotypes of the subtribe Delphiniinae. Rep Biol Inst Ehime Univ 3:1–8Google Scholar
  50. Langlet O (1927) Beiträge zur Zytologie der Ranuncula. Svensk Bot Tidskr 21:1–17Google Scholar
  51. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New YorkGoogle Scholar
  52. Li XW, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Acta Bot Yunnan 15:217–231Google Scholar
  53. Li JJ, Wen SX, Zhang QS, Wang FB, Zheng BX, Li BY (1979) A discussion on the period, amplitude and type of the uplift of the Qinghai–Xizang (Tibetan) Plateau. Sci Sin 22:1314–1328Google Scholar
  54. Li JJ, Fang XM, Ma HZ, Zhu JJ, Pan BT, Chen HL (1996) Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Sci China, Ser D Earth Sci 39:380–390Google Scholar
  55. Liang X, Chen L, Song L, Fei W, He M, He C, Yin Z (2017) Diterpenoid alkaloids from the root of Aconitum sinchiangense W. T. Wang with their antitumor and antibacterial activities. Nat Prod Res 11:1–8. doi: 10.1080/14786419.2016.1272113 CrossRefGoogle Scholar
  56. Lihova J, Shimizu KK, Marhold K (2006) Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Molec Phylogen Evol 39:759–786. doi: 10.1016/j.ympev.2006.01.027 CrossRefPubMedGoogle Scholar
  57. Liu K, Warnow TJ, Holder MT, Nelesen S, Yu J, Stamatakis A et al (2012) SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 61:90–106. doi: 10.1093/sysbio/syr095 CrossRefPubMedGoogle Scholar
  58. Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ (2013) Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol 199:1093–1108. doi: 10.1111/nph.12336 CrossRefPubMedGoogle Scholar
  59. Luo Y, Yang QE (2005) Taxonomic revision of Aconitum (Ranunculaceae) from Sichuan, China. Acta Phytotax Sin 43:289–386. doi: 10.1360/aps040102 CrossRefGoogle Scholar
  60. Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780. doi: 10.1111/j.0014-3820.2001.tb00826.x CrossRefPubMedGoogle Scholar
  61. Mansion G, Zeltner L, Bretagnolle F (2005) Phylogenetic patterns and polyploid evolution within the Mediterranean genus Centaurium (Gentianaceae-Chironieae). Taxon 54:931–950. doi: 10.2307/25065479 CrossRefGoogle Scholar
  62. Mavrodiev EV, Chester M, Suárez-Santiago VN, Visger CJ, Rodriguez R, Susanna A et al (2015) Multiple origins and chromosomal novelty in the allotetraploid Tragopogon castellanus (Asteraceae). New Phytol 206:1172–1183. doi: 10.1111/nph.13227 CrossRefPubMedGoogle Scholar
  63. Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH et al (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257. doi: 10.1126/science.1207205 CrossRefPubMedGoogle Scholar
  64. Myers N, Mittermeier R, Mittermeier GC, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefPubMedGoogle Scholar
  65. Oskars TR, Bouchetb P, Malaquiasa MAE (2015) A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers. Molec Phylogen Evol 89:130–150. doi: 10.1016/j.ympev.2015.04.011 CrossRefPubMedGoogle Scholar
  66. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462. doi: 10.1016/j.cell.2007.10.022 CrossRefPubMedGoogle Scholar
  67. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Rev Genet 34:401–437. doi: 10.1146/annurev.genet.34.1.401 CrossRefPubMedGoogle Scholar
  68. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  69. Paun O, Fay MF, Soltis DE, Chase MW (2007) Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 56:649–656. doi: 10.2307/25065850 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Pigg KB, DeVore ML (2005) Palaeoactaea gen. nov. (Ranunculaceae) fruits from the Paleogene of North Dakota and the London clay. Amer J Bot 92:1650–1659. doi: 10.3732/ajb.92.10.1650 CrossRefPubMedGoogle Scholar
  71. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  72. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  73. Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molec Phylogen Evol 59:225–244. doi: 10.1016/j.ympev.2011.01.012 CrossRefPubMedGoogle Scholar
  74. Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9:e89543. doi: 10.1371/journal.pone.0089543 PubMedCentralCrossRefPubMedGoogle Scholar
  75. Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW et al (2014) BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol 5:701–707. doi: 10.1111/2041-210X.12199 CrossRefGoogle Scholar
  76. Rambaut A, Suchard MA, Drummond AJ (2013) Tracer v1.6. Available at: http://tree.bio.ed.ac.uk/software/tracer/
  77. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Rev Ecol Syst 29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467 CrossRefGoogle Scholar
  78. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annual Rev Ecol Syst 33:589–639. doi: 10.1146/annurev.ecolsys.33.010802.150437 CrossRefGoogle Scholar
  79. Ronquist F (1997) Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst Biol 46:195–203CrossRefGoogle Scholar
  80. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  81. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer J Bot 84:1120–1136. doi: 10.2307/2446155 CrossRefPubMedGoogle Scholar
  82. Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ et al (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61:289–313. doi: 10.1093/sysbio/syr116 CrossRefPubMedGoogle Scholar
  83. Schilling EE, Panero JL, Crozier BS, Scott RW, Dávila P (2015) Bricklebush (Brickellia) phylogeny reveals dimensions of the great Asteraceae radiation in Mexico. Molec Phylogen Evol 85:161–170. doi: 10.1016/j.ympev.2015.02.007 CrossRefPubMedGoogle Scholar
  84. Semenov AA, Enikeev AG, Snetkova LV, Permyakov AV, Sokolova NA, Dudareva LV (2016) Ortho-phthalic acid esters in lipophilic extract from the cell culture of Aconitum baicalense Turcz ex Rapaics 1907. Dokl Biochem Biophys 471:421–422. doi: 10.1134/S1607672916060120 CrossRefPubMedGoogle Scholar
  85. Shang XM, Lee CL (1984) Chromosome studies of ten species of Aconitum in China. Acta Phytotax Sin 22:378–385Google Scholar
  86. Sharbel TF, Mitchell-Olds T (2001) Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). Heredity 87:59–68. doi: 10.1046/j.1365-2540.2001.00908.x CrossRefPubMedGoogle Scholar
  87. Shi YF, Li JJ, Li BY (1998) Uplift and environmental changes of Qinghai–Tibetan Plateau in the late Cenozoic. Guangdong Science and Technology Press, GuangzhouGoogle Scholar
  88. Silvestro D, Michalak I (2012) RAxMLGUI: a graphical front-end for RAxML. Organisms Diversity Evol 12:335–337. doi: 10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  89. Slotte T, Ceplitis A, Neuffer B, Hurka H, Lascoux M (2006) Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C. bursa-pastoris based on chloroplast and nuclear DNA sequences. Amer J Bot 93:1714–1724. doi: 10.3732/ajb.93.11.1714 CrossRefGoogle Scholar
  90. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352. doi: 10.1016/S0169-5347(99)01638-9 CrossRefGoogle Scholar
  91. Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate J (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501. doi: 10.1111/j.1095-8312.2004.00335.x CrossRefGoogle Scholar
  92. Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann New York Acad Sci 1133:3–25. doi: 10.1196/annals.1438.005 CrossRefPubMedGoogle Scholar
  93. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C et al (2009) Polyploidy and angiosperm diversification. Amer J Bot 96:336–348. doi: 10.3732/ajb.0800079 CrossRefPubMedGoogle Scholar
  94. Song BH, Wang XQ, Wang XR, Sun LJ, Hong DY, Peng PH (2002) Maternal lineages of Pinus densata, a diploid hybrid. Molec Ecol 11:1057–1063. doi: 10.1046/j.1365-294X.2002.01502.x CrossRefGoogle Scholar
  95. Spicer RA, Harris NB, Widdowson WM, Herman AB, Guo S, Valdes PJ et al (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624. doi: 10.1038/nature01356 CrossRefPubMedGoogle Scholar
  96. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  97. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  98. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, LondonGoogle Scholar
  99. Sun XJ, Song CQ, Chen XD (1999) China quaternary pollen database (CPD) and Biome 6000 project. Advance Earth Sci 8:407–411Google Scholar
  100. Sun G, Dilcher DL, Wang HS, Chen ZD (2011) A eudicot from the Early Cretaceous of China. Nature 471:625–628. doi: 10.1038/nature09811 CrossRefPubMedGoogle Scholar
  101. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0 b10. Sinauer Associates, SunderlandGoogle Scholar
  102. Tamura M (1995) Ranunculaceae. In: Hiepko P (ed) Die Natürlichen Pflanzenfamilien, Aufl. II. 17a (4). Duncker and Humblot, Berlin, pp 223–555Google Scholar
  103. Tamura M, Lauener LA (1979) A synopsis of Aconitum subgenus Lycoctonum: II. Notes Roy Bot Gard Edinburgh 37:431–466Google Scholar
  104. Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307. doi: 10.1016/0169-5347(92)90228-4 CrossRefPubMedGoogle Scholar
  105. Tuomisto H, Poulsen AD, Ruokolainen K, Moran RC, Quintana C, Celi J, Cañas G (2003) Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecol Applic 13:352–371. doi: 10.1890/1051-0761(2003)013[0352:LFPWSH]2.0.CO;2
  106. Utelli AB, Roy BA, Baltisberger M (2000) Molecular and morphological analyses of European Aconitum species (Ranunculaceae). Pl Syst Evol 224:195–212. doi: 10.1007/BF00986343 CrossRefGoogle Scholar
  107. Verboom GA, Bergh NG, Haiden SA, Hoffmann V, Britton MN (2015) Topography as a driver of diversification in the Cape Floristic Region of South Africa. New Phytol 207:368–376. doi: 10.1111/nph.13342 CrossRefPubMedGoogle Scholar
  108. Wada K, Takeda K, Haraguchi M, Abe Y, Kuwahara N, Suzuki S, Terui A, Masaka T, Munakata N, Uchida M, Nunokawa M, Yamashita H, Goto M, Lee KH (2016) Four new diterpenoid alkaloids from Aconitum japonicum. Pl Med (Stuttgart) 81:S1–S381Google Scholar
  109. Wang W, Lu AM, Ren Y, Endress ME, Chen ZD (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Pl Ecol Evol Syst 11:81–110. doi: 10.1016/j.ppees.2009.01.001 CrossRefGoogle Scholar
  110. Wang H, Qiong L, Sun K, Lu F, Wang YG, Song ZP et al (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai–Tibetan Plateau. Molec Ecol 19:2964–2979. doi: 10.1111/j.1365-294X.2010.04729.x CrossRefPubMedGoogle Scholar
  111. Wang JF, Pan YZ, Gong X, Chiang CY, Kuroda C (2011) Chloroplast DNA variation and phylogeography of Ligularia tongolensis (Asteraceae), a species endemic to the Hengduan Mountains region of China. J Syst Evol 49:108–119. doi: 10.1111/j.1759-6831.2011.00117.x CrossRefGoogle Scholar
  112. Wang W, Liu Y, Yu SX, Gao TG, Chen ZD (2013) Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai–Tibetan Plateau. Taxon 62:713–722. doi: 10.12705/624.10 CrossRefGoogle Scholar
  113. Weeks A, Simpson BB (2004) Molecular genetic evidence for interspecific hybridization among endemic Hispaniolan Bursera (Burseraceae). Amer J Bot 91:976–984. doi: 10.3732/ajb.91.6.976 CrossRefGoogle Scholar
  114. Wen J, Zhang JQ, Nie ZL, Zhong Y, Sun H (2014) Evolutionary diversifications of plants on the Qinghai–Tibetan Plateau. Frontiers Genet 5:4. doi: 10.3389/fgene.2014.00004 PubMedCentralPubMedGoogle Scholar
  115. Wendel JF, Doyle JJ (2004) Polyploidy and evolution in plants. In: Henry R (ed) Diversity and evolution in plants. CABI Publishing, Wallingford, pp 97–117Google Scholar
  116. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  117. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879. doi: 10.1073/pnas.0811575106 PubMedCentralCrossRefPubMedGoogle Scholar
  118. Woolley SM, Posada D, Crandall KA (2008) A comparison of phylogenetic network methods using computer simulation. PLoS ONE 3:e1913. doi: 10.1371/journal.pone.0001913 PubMedCentralCrossRefPubMedGoogle Scholar
  119. Wu ZY (1988) Hengduan mountain flora and her significance. J Japan Bot 63:1–15Google Scholar
  120. Xu TT, Abbott RJ, Milne RI, Mao K, Du FK, Wu GL, Ciren ZX, Miehe G, Liu JQ (2010) Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai–Tibetan Plateau and adjacent regions. BMC Evol Biol 10:194. doi: 10.1186/1471-2148-10-194 PubMedCentralCrossRefPubMedGoogle Scholar
  121. Yang QE (1996) A karyotype study of 15 species in the tribe Delphineae (Ranunculaceae) from China. Acta Phytotax Sin 34:39–47Google Scholar
  122. Yang QE (1999) Taxonomic notes on some species of Aconitum L. (Ranunculaceae) from Yunnan, China. Acta Phytotax Sin 37:545–590Google Scholar
  123. Yang QE (2001) Cytology of 12 species in Aconitum L. and of 18 species in Delphinium L. of the tribe Delphineae (Ranunculaceae) from China. Acta Phytotax Sin 39:502–514Google Scholar
  124. Yang QE, Gu ZJ, Wu ZY (1994) A karyomorphological study in Aconitum subgen. Lycoctonum (Ranunculaceae) from Yunnan. Acta Botanica Yunnanica 16:61–74Google Scholar
  125. Yi Z, Strüder-Kypke M, Hu X, Lin X, Song W (2014) Sampling strategies for improving tree accuracy and phylogenetic analyses: a case study in ciliate protists, with notes on the genus Paramecium. Molec Phylogen Evol 71:142–148. doi: 10.1016/j.ympev.2013.11.013 CrossRefPubMedGoogle Scholar
  126. Yost JM, Bontrager M, McCabe SW, Burton D, Simpson MG, Kay KM, Ritter M (2013) Phylogenetic Relationships and Evolution in Dudleya (Crassulaceae). Syst Bot 38:1096–1104. doi: 10.1600/036364413X674760 CrossRefGoogle Scholar
  127. Yu Y, Harris AJ, Blair C, He XJ (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molec Phylogen Evol 87:46–49. doi: 10.1016/j.ympev.2015.03.008 CrossRefPubMedGoogle Scholar
  128. Yuan YW, Olmstead RG (2008) A species-level phylogenetic study of the Verbena complex (Verbenaceae) indicates two independent intergeneric chloroplast transfers. Molec Phylogen Evol 48:23–33. doi: 10.1016/j.ympev.2008.04.004 CrossRefGoogle Scholar
  129. Yuan Q, Yang QE (2006) Polyploidy in Aconitum subgenus Lycoctonum (Ranunculaceae). Bot J Linn Soc 150:343–353. doi: 10.1111/j.1095-8339.2006.00468.x CrossRefGoogle Scholar
  130. Zhao Y, Bu G, Zhou Y, Lv L, Yan G, Chen B, Wang L, Cen X (2010) Mechanism study of Aconitum-induced neurotoxicity in PC12 cells: involvement of dopamine release and oxidative damage. Neurotoxicology 31:752–757. doi: 10.1016/j.neuro.2010.06.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Hanghui Kong
    • 1
    Email author
  • Yu Zhang
    • 1
  • Yu Hong
    • 1
  • Michael S. Barker
    • 2
  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations