Skip to main content

Advertisement

Log in

Phylogenetic analyses of Phragmites spp. in southwest China identified two lineages and their hybrids

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The species/lineage delimitation and possible hybridization/introgression are prerequisites in the management of invasive organism. Phragmites australis invaded diverse habitats and displaced the native lineages in North America as a consequence of the introduction from the Eurasia. Such species threatened the biodiversity safety of the invaded regions, in particular the biodiversity hot spots. Southwest (SW) China is a biodiversity hot spot with the occurrence of Phragmites species, both native and introduced. However, the genetic identity of Phragmites species in this biodiversity hot spot remains unclear, hampering effective ecological managements. In this study, we explored the phylogenetic lineages of Phragmites species in SW China. A total of 44 accessions sampled across SW China were analyzed using two chloroplast DNA (cpDNA) markers and amplified fragment length polymorphisms. Two genetic lineages were recovered, i.e., (1) the tropical lineage which primarily consisted of native Phragmites species represented by cpDNA haplotypes I, Q, and U in relatively low altitude and (2) the common lineage including native species at higher elevations in the Hengduan Mountains as well as artificially planted species represented by cpDNA haplotype P. The between-lineage hybridization was suggested for five analyzed accessions collected from either natural or artificial habitats. The putative hybrids might have originated from the maternal native tropical lineages and paternal introduced common lineage. Our results suggest the likelihood of introgressive hybridizations in SW China and thus provided implications for future research and ecological management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

  • An J, Wang Q, Yang J, Liu J (2012) Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America. J Syst Evol 50:334–340. doi:10.1111/j.1759-6831.2012.00192.x

    Article  Google Scholar 

  • Bain JF, Jansen RK (1996) Numerous chloroplast DNA polymorphisms are shared among different populations and species in the aureoid Senecio (Packera) complex. Canad J Bot 74:1719–1728

    Article  Google Scholar 

  • Bobola MS, Eckert RT, Klein AS, Staplefeldt K, Hillenberg KA, Gendreau SB (1996) Hybridization between Picea rubens and Picea mariana: differences observed between montane and coastal island populations. Canad J Forest Res 26:444–452

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GA, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues AS (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Cho WK, Jo Y, Kim WI, Rim Y, Kim JY (2011) Identification of natural hybrids in Korean Phragmites using haplotype and genotype analyses. Pl Syst Evol 293:247–253. doi:10.1007/s00606-011-0423-5

    Article  Google Scholar 

  • Clayton WD (1967) Studies in the Gramineae: XIV. Kew Bull 21:111–117

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1660

    Article  CAS  Google Scholar 

  • Colin R, Eguiarte LE (2016) Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico. Amer J Bot 133:876–887. doi:10.3732/ajb.1500399

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resources 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gikas P, Ranieri E, Tchobanoglous G (2013) Removal of iron, chromium and lead from waste water by horizontal subsurface flow constructed wetlands. J Chem Technol Biotechnol 88:1906–1912. doi:10.1002/jctb.4048

    Article  CAS  Google Scholar 

  • Hurry CR, James EA, Thompson RM (2013) Connectivity, genetic structure and stress response of Phragmites australis: issues for restoration in a salinising wetland system. Aquat Bot 104:138–146

    Article  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. doi:10.7717/peerj.281

    Article  PubMed Central  PubMed  Google Scholar 

  • Lambert AM, Saltonstall K, Long R, Dudley TL (2016) Biogeography of Phragmites australis lineages in the southwestern United States. Biol Invasions 18:2597–2617. doi:10.1007/s10530-016-1164-8

    Article  Google Scholar 

  • Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M, Brix H (2006) A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Pl Syst Evol 258:161–182. doi:10.1007/s00606-006-0412-2

    Article  Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MH, Olesen B, Riis T, Sorrell BK, Brix H (2012a) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Amer J Bot 99:538–551. doi:10.3732/ajb.1100396

    Article  CAS  Google Scholar 

  • Lambertini C, Sorrell BK, Riis T, Olesen B, Brix H (2012b) Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants 2012:pls020. doi:10.1093/aobpla/pls020

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu D, Ge Y, Chang J, Peng C, Gu B, Chan GY, Wu X (2009) Constructed wetlands in China: recent developments and future challenges. Frontiers Ecol Environm 7:261–268. doi:10.1890/070148

    Article  Google Scholar 

  • Liu D, Wu X, Chang J, Gu B, Min Y, Ge Y, Shi Y, Xue H, Peng C, Wu J (2012) Constructed wetlands as biofuel production systems. Nat Clim Change 2:190–194. doi:10.1038/nclimate1370

    Article  CAS  Google Scholar 

  • López-Pujol J, Zhang F, Sun H, Ying T, Ge S (2011) Centres of plant endemism in China: places for survival or for speciation? J Biogeogr 38:1267–1280

    Article  Google Scholar 

  • Meadows RE, Saltonstall K (2007) Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva peninsula and southern New Jersey. J Torrey Bot Soc 134:99–107

    Article  Google Scholar 

  • Meyerson LA, Cronin JT (2013) Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biol Invasions 15:2605–2608. doi:10.1007/s10530-013-0491-2

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saltonstall K (2001) A set of primers for the amplification of noncoding regions of chloroplast DNA in the grasses. Molec Ecol Notes 1:76–78

    Article  CAS  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449. doi:10.1073/pnas.032477999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saltonstall K (2003) Microsatellite variation within and among North American lineages of Phragmites australis. Molec Ecol 12:1689–1702. doi:10.1046/j.1365-294X.2003.01849.x

    Article  CAS  Google Scholar 

  • Saltonstall K (2016) The naming of Phragmites haplotypes. Biol Invasions 18:2433–2441. doi:10.1007/s10530-016-1192-4

    Article  Google Scholar 

  • Saltonstall K, Lambertini C (2012) The value of repetitive sequences in chloroplast DNA for phylogeographic inference: a comment on Vachon & Freeland 2011. Molec Ecol Resources 12:581–585

    Article  Google Scholar 

  • Saltonstall K, Castillo HE, Blossey B (2014) Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. Amer J Bot 101:211–215. doi:10.3732/ajb.1300298

    Article  Google Scholar 

  • Saltonstall K, Lambert AM, Rice N (2016) What happens in Vegas, better stay in Vegas: Phragmites australis hybrids in the Las Vegas Wash. Biol Invasions 18:2463–2474. doi:10.1007/s10530-016-1167-5

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Collier TG, Edgerton ML (1991) Chloroplast DNA variation within and among genera of the Heuchera group: evidence for extensive chloroplast capture and the paraphyly of Heuchera and Mitella. Amer J Bot 78:1091–1112

    Article  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molec Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka TST, Irbis C, Kumagai H, Inamura T (2016) Timing of harvest of Phragmites australis (CAV.) Trin. Ex Steudel affects subsequent canopy structure and nutritive value of roughage in subtropical highland. J Environm Managem 166:420–428

    CAS  Google Scholar 

  • Tanaka TST, Irbis C, Kumagai H, Wang P, Li K, Inamura T (2017) Effect of Phragmites japonicus harvest frequency and timing on dry matter yield and nutritive value. J Environm Managem 187:436–443. doi:10.1016/j.jenvman.2016.11.008

    CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tho BT, Sorrell BK, Lambertini C, Eller F, Brix H (2016) Phragmites australis: how do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange? Biol Invasions 18:2563–2576. doi:10.1007/s10530-016-1158-6

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi:10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  • Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Molec Ecol Resources 8:725–735. doi:10.1111/j.1755-0998.2007.02073.x

    Article  CAS  Google Scholar 

  • Willson A (2006) Forest conversion and land use change in Rural Northwest Yunnan, China. Mountain Res Developm 26:227–236

    Article  Google Scholar 

  • Yang Y, Tian K, Hao J, Pei S, Yang Y (2004) Biodiversity and biodiversity conservation in Yunnan, China. Biodivers Conservation 13:813–826

    Article  Google Scholar 

  • Ye Z, Baker A, Wong M, Willis A (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. Ex Steudel. Ann Bot (Oxford) 80:363–370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Kristin Saltonstall for her help in assigning new haplotype name and giving us unpublished data for haplotype analyses based on the mononucleotide regions. This research was funded by a Grant-in-Aid for JSPS Fellows 14J00203, the Kyoto University Foundation, and the Grant-in-Aid for Scientific Research (A) 21255007 and (A) 26257411 from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chagan Irbis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Yunpeng Zhao.

Information on electronic supplementary materials

Below is the link to the electronic supplementary material.

Online Resource 1. Alignment used to produce phylogeny. (PDF 135 kb)

606_2017_1403_MOESM2_ESM.pdf

Online Resource 2. Sampling locations and haplotypes identified by chloroplast DNA (cpDNA). Microsatellite variations in cpDNA are indicated with a small letter following the trnL–trnT and rbcL–psaI sequences according to Saltonstall (2016). “x” indicates markers analyzed for each sample. (PDF 91 kb)

606_2017_1403_MOESM3_ESM.pdf

Online Resource 3. Variations of mononucleotide repeat regions in trnT–trnL cpDNA sequences. Base pairs represent the location of each poly-A microsatellite. (PDF 58 kb)

606_2017_1403_MOESM4_ESM.pdf

Online Resource 4. Variations of mononucleotide repeat regions in rbcL–psaI cpDNA sequences. Base pairs represent location of each poly-A microsatellite. (PDF 59 kb)

Online Resource 5. DeltaK plot for the determination of the best value of K. (PDF 68 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Alignment used to produce phylogeny.

Online Resource 2. Sampling locations and haplotypes identified by chloroplast DNA (cpDNA). Microsatellite variations in cpDNA are indicated with a small letter following the trnL–trnT and rbcL–psaI sequences according to Saltonstall (2016). “x” indicates markers analyzed for each sample.

Online Resource 3. Variations of mononucleotide repeat regions in trnT–trnL cpDNA sequences. Base pairs represent the location of each poly-A microsatellite.

Online Resource 4. Variations of mononucleotide repeat regions in rbcL–psaI cpDNA sequences. Base pairs represent location of each poly-A microsatellite.

Online Resource 5. DeltaK plot for the determination of the best value of K.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T.S.T., Irbis, C. & Inamura, T. Phylogenetic analyses of Phragmites spp. in southwest China identified two lineages and their hybrids. Plant Syst Evol 303, 699–707 (2017). https://doi.org/10.1007/s00606-017-1403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1403-1

Keywords

Navigation