Plant Systematics and Evolution

, Volume 303, Issue 5, pp 641–651 | Cite as

Nuclear microsatellite markers reveal the low genetic structure of Pinus mugo Turra (dwarf mountain pine) populations in Europe

  • Weronika B. ŻukowskaEmail author
  • Witold Wachowiak
Original Article


Twenty-one populations (555 individuals) covering the entire native range of Pinus mugo Turra (dwarf mountain pine) were investigated for genetic variation scored at 13 nuclear microsatellite markers (nSSRs). The main objective of the present study was to determine the genetic structure across the present distribution of the species and locate populations of different genetic compositions. Most of the genetic variation was observed within the populations (95%). The assignment of populations based on Bayesian clustering methods revealed that the Sudeten populations of P. mugo form a separate genetic cluster. These stands have likely been established through the founder effects of Alpine migrants. The distribution and level of SSR polymorphisms, along with no evidence of isolation by distance or phylogeographic structure, indicate that the present populations of P. mugo have diverged relatively recently and originate from a larger glacial distribution of the species. One peripheral stand from Italy had the lowest values of most calculated genetic variation indices. This stand could therefore be more susceptible to genetic drift and a negative impact of predicted environmental changes. We discuss our findings with respect to previously published results on the genetic and morphological variation of P. mugo and with consideration for the conservation genetics of the species.


Adaptation Conservation genetics Genetic diversity Phylogeography Population differentiation Postglacial recolonization 



The authors would like to thank K. Boratyńska and A. Boratyński for the collection of the plant material and M. Litkowiec for technical support and valuable comments concerning the data analysis. The work was financially supported through a grant from the Polish National Science Centre (Grant No. DEC-2012/05/E/NZ9/03476).


This study was funded through a grant from the Polish National Science Centre (Grant No. DEC-2012/05/E/NZ9/03476).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

606_2017_1395_MOESM1_ESM.pdf (272 kb)
Supplementary material 1 (PDF 272 kb)
606_2017_1395_MOESM2_ESM.pdf (120 kb)
Supplementary material 2 (PDF 120 kb)
606_2017_1395_MOESM3_ESM.pdf (292 kb)
Supplementary material 3 (PDF 291 kb)


  1. Afzal-Rafii Z, Dodd RS (2007) Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in Western Europe. Molec Ecol 16:723–736. doi: 10.1111/j.1365-294X.2006.03183.x CrossRefGoogle Scholar
  2. Boratyńska K, Boratyński A (2007) Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. uliginosa as revealed in needle sclerenchyma cells. Flora 202:555–569. doi: 10.1016/j.flora.2006.11.004 CrossRefGoogle Scholar
  3. Boratyńska K, Muchewicz E, Drojma M (2004) Pinus mugo Turra geographic differentiation based on needle characters. Dendrobiology 51:9–17Google Scholar
  4. Boratyńska K, Dzialuk A, Lewandowski A, Marcysiak K, Jasińska AK, Sobierajska K, Tomaszewski D, Burczyk J, Boratyński A (2014) Geographic distribution of quantitative traits variation and genetic variability in natural populations of Pinus mugo in Central Europe. Dendrobiology 72:65–84. doi: 10.12657/denbio.072.006 CrossRefGoogle Scholar
  5. Boratyńska K, Jasińska AK, Boratyński A (2015) Taxonomic and geographic differentiation of Pinus mugo complex on the needle characteristics. Syst Biodivers 13:581–595. doi: 10.1080/14772000.2015.1058300 CrossRefGoogle Scholar
  6. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molec Biol Evol 24:621–631. doi: 10.1093/molbev/msl191 CrossRefPubMedGoogle Scholar
  7. Chapuis MP, Lecoq M, Michalakis Y, Loiseau AG, Sword G, Piry S (2008) Do outbreaks affect genetic population structure? A worldwide survey in Locusta migratoria, a pest plagued by microsatellite null alleles. Molec Ecol 17:3640–3653. doi: 10.1111/j.1365-294X.2008.03869.x CrossRefGoogle Scholar
  8. Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  9. Critchfield WB, Little EL (1971) Geographic distribution of the pines of the world. U.S. Department of Agriculture, WashingtonGoogle Scholar
  10. Di Rienzo AA, Peterson C, Garza JC, Valdes AM, Slatkin M, Freime RB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256. doi: 10.1007/BF00220937 CrossRefPubMedGoogle Scholar
  12. Dzialuk A, Boratyński A, Boratyńska K, Burczyk J (2012) Geographic patterns of genetic diversity of Pinus mugo (Pinaceae) in Central European mountains. Dendrobiology 68:31–41Google Scholar
  13. Earl DA, von Holdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resources 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  15. García-Amorena I, Gómez Manzaneque F, Rubiales JM, Granja HM, Soares de Carvalho G, Morla C (2007) The Late Quaternary coastal forests of western Iberia: a study of their macroremains. Palaeogeogr Palaeoclimatol Palaeoecol 254:448–461. doi: 10.1016/j.palaeo.2007.07.003 CrossRefGoogle Scholar
  16. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: Updated from Goudet (1995)
  17. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x CrossRefPubMedGoogle Scholar
  18. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans Ser B Biol Sci 351:1291–1298CrossRefGoogle Scholar
  19. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molec Ecol Notes 2:618–620. doi: 10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  20. Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482PubMedPubMedCentralGoogle Scholar
  21. Heuertz M, Teufel J, González-Martínez SC, Soto A, Fady B, Alía R, Vendramin GG (2010) Geography determines genetic relationships between species of mountain pine (Pinus mugo complex) in western Europe. J Biogeogr 37:541–556. doi: 10.1111/j.1365-2699.2009.02223.x CrossRefGoogle Scholar
  22. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  23. Latałowa M, Tobolski K, Nalepka D (2004) Pinus L. subgenus Pinus (subgen. Diploxylon (Koehne) Pilger)—Pine. In: Ralska-Jasiewiczowa M (ed) Late glacial and Holocene history of vegetation in Poland based on isopollen maps. W. Szafer Institute of Botany, Kraków, pp 165–177Google Scholar
  24. Lewandowski A, Boratyński A, Mejnartowicz L (2000) Allozyme investigations on the genetic differentiation between closely related pines—Pinus sylvestris, P. mugo, P. uncinata, and P. uliginosa (Pinaceae). Pl Syst Evol 221:15–24. doi: 10.1007/BF01086377 CrossRefGoogle Scholar
  25. Lowry DB (2010) Landscape evolutionary genomics. Biol Lett 6:502–504. doi: 10.1098/rsbl.2009.0969 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biol 12:228–237CrossRefGoogle Scholar
  27. Markert JA, Champlin DM, Gutjahr-Gobell R, Grear JS, Kuhn A, McGreevy TJ Jr, Roth A, Bagley MJ, Nacci DE (2010) Population genetic diversity and fitness in multiple environments. BMC Evol Biol 10:205. doi: 10.1186/1471-2148-10-205 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983. doi: 10.1093/bioinformatics/btp303 CrossRefPubMedGoogle Scholar
  29. Monteleone I, Ferrazzini D, Belletti P (2006) Effectiveness of neutral RAPD markers to detect genetic divergence between the subspecies uncinata and mugo of Pinus mugo Turra. Silva Fenn 40:391–406CrossRefGoogle Scholar
  30. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122. doi: 10.1038/nrg2931 CrossRefPubMedGoogle Scholar
  31. Nosil P, Feder JL (2013) Genome evolution and speciation: toward quantitative descriptions of pattern and process. Evolution 67:2461–2467. doi: 10.1111/evo.12191 CrossRefPubMedGoogle Scholar
  32. Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molec Ecol 22:5983–5999. doi: 10.1111/mec.12561 CrossRefGoogle Scholar
  33. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  34. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Molec Ecol 21:3403–3418. doi: 10.1111/j.1365-294X.2012.05635.x CrossRefGoogle Scholar
  35. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  36. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  37. Robledo-Arnuncio JJ, Collada C, Alía R, Gil L (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605. doi: 10.1111/j.1365-2699.2004.01196.x CrossRefGoogle Scholar
  38. Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Molec Ecol Resources 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  39. Sannikov SN, Petrova IV, Schweingruber F, Egorov EV, Parpan TV (2011) Genetic differentiation of Pinus mugo Turra and P. sylvestris L. populations in the Ukrainian Carpathians and the Swiss Alps. Russ J Ecol 42:270–276. doi: 10.1134/s1067413611040151 CrossRefGoogle Scholar
  40. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annual Rev Ecol Evol Syst 43:23–43. doi: 10.1146/annurev-ecolsys-110411-160248 CrossRefGoogle Scholar
  41. Sinclair WT, Morman JD, Ennos RA (1998) Multiple origins for Scots pine (Pinus sylvestris L.) in Scotland evidence from mitochondrial DNA variation. Heredity 80:233–240. doi: 10.1046/j.1365-2540.1998.00287.x CrossRefGoogle Scholar
  42. Slavov GT, Zhelev P (2004) Allozyme variation, differentiation, and inbreeding in populations of Pinus mugo in Bulgaria. Canad J Forest Res 34:2611–2617. doi: 10.1139/x04-127 CrossRefGoogle Scholar
  43. Sobierajska K, Boratyńska K (2008) Variability of needle characteristics of Pinus mugo Turra populations in the Karkonosze Mountains in Poland. Dendrobiology 59:41–49Google Scholar
  44. Sobierajska K, Boratyńska K, Marcysiak K (2010) Variation of cone characters in Pinus mugo (Pinaceae) populations in the Giant Mountains (Karkonosze, Sudetes). Dendrobiology 63:33–41Google Scholar
  45. Soranzo N, Alía R, Provan J, Powell W (2000) Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Molec Ecol 9:1205–1211. doi: 10.1046/j.1365-294x.2000.00994.x CrossRefGoogle Scholar
  46. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molec Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  47. Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Molec Ecol 8:1117–1126. doi: 10.1046/j.1365-294x.1999.00666.x CrossRefGoogle Scholar
  48. Wachowiak W, Boratyńska K, Cavers S (2013) Geographical patterns of nucleotide diversity and population differentiation in three closely related European pine species in the Pinus mugo complex. Bot J Linn Soc 172:225–238. doi: 10.1111/boj.12049 CrossRefGoogle Scholar
  49. Willis KJ, Bennett KD, Birks HJB (1998) The late Quaternary dynamics of pines in Europe. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 107–121Google Scholar
  50. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of Central and Southeastern Europe. Quatern Res 53:203–213. doi: 10.1006/qres.1999.2119 CrossRefGoogle Scholar
  51. Żukowska WB, Wachowiak W (2016) Utility of closely related taxa for genetic studies of adaptive variation and speciation: current state and perspectives in plants with focus on forest tree species. J Syst Evol 54:17–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Institute of DendrologyPolish Academy of SciencesKórnikPoland
  2. 2.Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations