Skip to main content

Secondary contact, hybridization and polyploidization add to the biodiversity in the Hengduan Mountains, exemplified by the widespread Corallodiscus lanuginosus (Gesneriaceae)

Abstract

Corallodiscus lanuginosus is distributed 12,000 km across its northeast–southwest boundaries, showing its highest morphological diversity in the Hengduan Mountains, Southwest China. We investigated the mechanisms behind the high diversity in this species. We acquired ITS sequence data across the distribution range of the genus, reconstructed dated phylogenies, projected the resulting clades onto geographic maps and linked the results with inferred ploidy levels of the populations. We found strong geographic patterns for the ITS clades but with extensively overlapping ranges, particularly in the Hengduan Mountains area. We deduced an origin of C. lanuginosus in the mid-Oligocene. We used the presence of ITS polymorphisms to infer a high level of hybridization events mainly in areas of clade overlap, where we also inferred repeated tetraploidization events to have taken place. Pre- and post-Quaternary climate oscillation-driven expansions and contractions of distribution ranges have allowed secondary contacts, hybridization and introgression that shaped the current patchy distribution of morphological diversity in the species. Polyploidization as a reinforcing genetic barrier added to the genetic diversity in space and time particularly in the Hengduan Mountains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akciz S, Burchfiel BC, Crowley JL, Yin J, Chen L (2008) Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan syntaxis, Yunnan, China. Geosphere 4:292–314. doi:10.1130/GES00111.1

    Article  Google Scholar 

  2. Balao F, Herrera J, Talavera S (2011) Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol 192:256–265. doi:10.1111/j.1469-8137.2011.03787.x

    Article  PubMed  Google Scholar 

  3. Beaufort-Murphy HT (1983) The seed surface morphology of the Gesneriaceae utilizing the scanning electron microscope and a new system for diagnosing seed morphology. Selbyana 6:220–422

    Google Scholar 

  4. Bennett MD (1971) The duration of meiosis. Proc Roy Soc London Ser B 178:277–299

    CAS  Article  Google Scholar 

  5. Bleeker W (2003) Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Molec Ecol 12:1831–1841. doi:10.1046/j.1365-294X.2003.01854.x

    CAS  Article  Google Scholar 

  6. Burtt BL (1947) Corallodiscus and Didissandra. Gard Chron Ser 3 122:204–212

  7. Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Pl Sci 3:432–438. doi:10.1016/S1360-1385(98)01327-2

    Article  Google Scholar 

  8. Cruzan MB, Arnold ML (1993) Ecological and genetic associations in an Iris hybrid zone. Evolution 47:1432–1445. doi:10.2307/2410158

    Article  Google Scholar 

  9. Cun YZ, Wang XQ (2015) Phylogeography and evolution of three closely related species of Tsuga (hemlock) from subtropical eastern Asia: Further insights into speciation of conifers. J Biogeogr 42:315–327. doi:10.1111/jbi.12421

    Article  Google Scholar 

  10. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Amer 19:11–15

    Google Scholar 

  11. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi:10.1073/pnas.97.13.7043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Gao LM, Möller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby M, Li DZ (2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molec Ecol 16:4684–4698. doi:10.1111/j.1365-294X.2007.03537.x

    CAS  Article  Google Scholar 

  14. Gao YD, Harris AJ, He XJ (2015) Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evol Biol 15:147. doi:10.1186/s12862-015-0405-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Georgieva K, Szigeti Z, Sarvari E, Gaspar L, Maslenkova L, Peva V, Peli E, Tuba Z (2007) Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during desiccation and rehydration. Planta 225:955–964. doi:10.1007/s00425-006-0396-8

    CAS  Article  PubMed  Google Scholar 

  16. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans Ser B 359:183–195. doi:10.1098/rstb.2003.1388

    CAS  Article  Google Scholar 

  17. Hilliard OM, Burtt BL (1971) Streptocarpus: an African plant study. University of Natal Press, Pietermaritzburg

    Google Scholar 

  18. Jong K, Möller M (2000) New chromosome counts in Streptocarpus (Gesneriaceae) from Madagascar and the Comoro Islands and their taxonomic significance. Pl Syst Evol 224:173–182. doi:10.1007/BF00986341

    Article  Google Scholar 

  19. Kamble MY, Shendage SM, Yadav SR (2006) Corallodiscus Batalin (Gesneriaceae)—a new generic record for peninsular India. Rheedea 16:63–65

    Google Scholar 

  20. Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM (2010) On the relationship between pollen size and genome size. J Bot (Hindawi) 2010:612017. doi:10.1155/2010/612017

  21. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  22. Lewontin RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336

    Article  Google Scholar 

  23. Li XW, Li J (1992) On the validity of the Tanaka line and its significance viewed from the distribution of eastern Asiatic genera in Yunnan. Acta Bot Yunnan 14:1–12

    Google Scholar 

  24. Li XW, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Acta Bot Yunnan 15:217–231

    CAS  Google Scholar 

  25. Li XW, Li J (1997) The Tanaka-Kaiyong line—an important floristic line for the study of the flora of East Asia. Ann Missouri Bot Gard 84:888–892

    Article  Google Scholar 

  26. Li Y, Zhai SN, Qiu YX, Guo YP, Ge XJ, Comes HP (2011) Glacial survival east and west of the ‘Mekong-Salween Divide’ in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae). Molec Phylogen Evol 59:412–424. doi:10.1016/j.ympev.2011.01.009

    Article  Google Scholar 

  27. Liu JQ, Tian B (2007) Origin, evolution, and systematics of Himalaya endemic genera. Newlett Himalayan Bot 40:20–27

    Google Scholar 

  28. Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ (2013) Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol 199:1093–1108. doi:10.1111/nph.12336

    Article  PubMed  Google Scholar 

  29. Liu BB, Abbott RJ, Lu ZQ, Tian B, Liu JQ (2014) Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibetan Plateau triggered by Quaternary climate change. Molec Ecol 23:3013–3027. doi:10.1111/mec.12783

    CAS  Article  Google Scholar 

  30. Meng Y, Yang YP, Sun H, Deng T, Nie ZL (2014) Chromosome numbers, karyotypes, and polyploidy evolution of Anaphalis species (Asteraceae: Gnaphalieae) from the Hengduan Mountains, SW China. Caryologia 67:238–249. doi:10.1080/0144235X.2014.974352

    Article  Google Scholar 

  31. Meyers LA, Levin DA (2006) On the abundance of polyploids in flowering plants. Evolution 60:1198–1206. doi:10.1554/05-629.1

    Article  PubMed  Google Scholar 

  32. Möller M, Cronk QCB (1997) Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Amer J Bot 84:956–965

    Article  Google Scholar 

  33. Möller M, Pullan M (2015) RBGE WebCyte2—an updated Gesneriaceae cytology database. Available at: http://elmer.rbge.org.uk/webcyte/webcyteintro.php

  34. Möller M, Pfosser M, Jang CG, Mayer V, Clark A, Hollingsworth ML, Barfuss MHJ, Wang YZ, Kiehn M, Weber A (2009) A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: Incongruence with available tribal classifications. Amer J Bot 96:989–1010. doi:10.3732/ajb.0800291

    Article  Google Scholar 

  35. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    CAS  Article  PubMed  Google Scholar 

  36. Neuffer B, Auge H, Mesch H, Amarell U, Brandl R (1999) Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molec Ecol 8:365–377. doi:10.1046/j.1365-294X.1998.00566.x

    Article  Google Scholar 

  37. Nie ZL, Wen J, Gu ZJ, Boufford DE, Sun H (2005) Polyploidy in the flora of the Hengduan Mountains hotspot, southwestern China. Ann Missouri Bot Gard 92:275–306

    Google Scholar 

  38. Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414. doi:10.1111/j.1096-0031.1999.tb00277.x

    Article  Google Scholar 

  39. Nylander JAA (2004) MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University, Uppsala

  40. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, Llewellyn D, Showmaker KC, Shu SQ, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu GJ, Lee TH, Li JP, Lin LF, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang HB, Xu CM, Wang JP, Wang ZN, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MFS, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang TZ, Dennis ES, Mayer KFX, Peterson DG, Rokhsar DS, Wang XY, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–428. doi:10.1038/nature11798

    CAS  Article  PubMed  Google Scholar 

  41. Petrova G, Moyankova D, Nishii K, Forrest L, Tsiripidis I, Drouzas AD, Djilianov D, Möller M (2015) The European paleoendemic Haberlea rhodopensis (Gesneriaceae) has an Oligocene origin and a Pleistocene diversification and occurs in a long-persisting refugial area in southeastern Europe. Int J Pl Sci 176:499–514. doi:10.1086/681990

    Article  Google Scholar 

  42. Puglisi C, Wei YG, Nishii K, Möller M (2011) Oreocharis × heterandra (Gesneriaceae): a natural hybrid from the Shengtangshan Mountains, Guangxi, China. Phytotaxa 38:1–18. doi:10.11646/phytotaxa.38.1.1

    Article  Google Scholar 

  43. Rambaut A (2012) FigTree v. 1.4. Available at: http://tree.bio.ed.ac.uk/software/figtree/

  44. Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109

    Google Scholar 

  45. Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914. doi:10.1126/science.1137729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Roalson EH, Roberts WR (2016) Distinct processes drive diversification in different clades of Gesneriaceae. Syst Biol 65:662–684. doi:10.5061/dryad.1br13

    Article  PubMed  Google Scholar 

  47. Ronquist F, Teslenko M, Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rout NC, Dhal NK, Dash PK, Biswal AK (2008) Corallodiscus Batalin (Gesneriaceae): a new generic record for Eastern Ghats, Orissa. Curr Sci India 95:23–24

    Google Scholar 

  49. Ruddiman WF, Kutzbach JE (1989) Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res Atmos 94:18409–18427

    Article  Google Scholar 

  50. Schenk JJ (2016) Consequences of secondary calibrations on divergence time estimates. PLoS ONE 11:e0148228. doi:10.1371/journal.pone.0148228

    Article  PubMed  PubMed Central  Google Scholar 

  51. Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207. doi:10.1016/j.tree.2004.01.003

    Article  PubMed  Google Scholar 

  52. Shi YF, Yu G, Liu XD, Li BY, Yao TD (2001) Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeogr Paleoclimatol Palaeoecol 169:69–83. doi:10.1016/S0031-0182(01)00216-4

    Article  Google Scholar 

  53. Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501. doi:10.1111/j.1095-8312.2004.00335.x

    Article  Google Scholar 

  54. Stebbins GL (1959) The role of hybridization in evolution. Proc Amer Philos Soc 103:231–251

    Google Scholar 

  55. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  56. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland

    Google Scholar 

  57. Tapponnier P, Lacassin R, Leloup PH, Scharer U, Zhong D, Wu H, Liu X, Ji S, Zhang L, Zhong J (1990) The Ailao Shan/Red River metamorphic belt: tertiary left-lateral shear between Indochina and South China. Nature 343:431–437. doi:10.1038/343431a0

    Article  Google Scholar 

  58. Wang WT, Pan KY, Li ZY (1990) Gesneriaceae. In: Wang WT (ed) Flora Reipublicae Popularis Sinicae, vol 69. Science Press, Beijing, pp 190–203

    Google Scholar 

  59. Wang WT, Pan KY, Li ZY, Weitzman AL, Skog LE (1998) Gesneriaceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 18. Science Press, Beijing and Missouri Botanical Garden Press, St Louis, pp 244–401

    Google Scholar 

  60. Wang YJ, Liu JQ, Miehe G (2007) Phylogenetic origins of the Himalayan endemic Dolomiaea, Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Ann Bot (Oxford) 99:311–322. doi:10.1093/aob/mcl259

    CAS  Article  Google Scholar 

  61. Wang H, Qiong L, Sun K, Lu F, Wang YG, Song ZP, Wu QH, Chen JK, Zhang WJ (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan Plateau. Molec Ecol 19:2964–2979. doi:10.1111/j.1365-294X.2010.04729.x

    CAS  Article  Google Scholar 

  62. Wang ZW, Chen ST, Nie ZL, Zhang JW, Zhou Z, Deng T, Sun H (2015) Climatic factors drive population divergence and demography: Insights based on the phylogeography of a riparian plant species endemic to the Hengduan mountains and adjacent regions. PLoS ONE 10:e0145014. doi:10.1371/journal.pone.0145014

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weber A, Möller M, Clark JL (2013) A new formal classification of Gesneriaceae. Selbyana 31:65–253

  64. Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 140:137–150. doi:10.1159/000351727

    CAS  Article  PubMed  Google Scholar 

  65. Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. In: Fang DD, Percy RG (eds) Cotton, 2nd ed. Agronomy Monograph 57. ASA, CSSA, and SSSA, Madison. doi:10.2134/agronmonogr57.2013.0020

  66. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, London, pp 315–322

    Google Scholar 

  67. Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at: http://ceb.csit.fsu.edu/awty

  68. Wu ZY, Wu SG (1998) A proposal for a new floristic kingdom (realm)—the E. Asiatic kingdom, its delineation and characteristics. In: Zhang AL, Wu SG (eds) Floristic characteristics and diversity of East Asian Plants. China Higher Education Press/Springer, Beijing, pp 3–42

    Google Scholar 

  69. Xu TT, Abbott RJ, Milne RI, Mao K, Du FK, Wu GL, Ciren ZX, Miehe G, Liu JQ (2010) Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evol Biol 10:194. doi:10.1186/1471-2148-10-194

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annual Rev Earth Planet Sci 28:211–280. doi:10.1146/annurev.earth.28.1.211

    CAS  Article  Google Scholar 

  71. Yuan Q, Yang QE (2008) Low incidence of polyploids and high uniformity of karyotypes displayed by Delphinium (Ranunculaceae) in the Hengduan Mountains region of south-west China. Bot J Linn Soc 158:172–188. doi:10.1111/j.1095-8339.2008.00849.x

    Article  Google Scholar 

  72. Zhang JW, Nie ZL, Wen J, Sun H (2011) Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China. Taxon 60:15–26

    Google Scholar 

  73. Zhou Z, Hong DY, Niu Y, Li GD, Nie ZL, Wen J, Sun H (2013) Phylogenetic and biogeographic analyses of the Sino-Himalayan endemic genus Cyananthus (Campanulaceae) and implications for the evolution of its sexual system. Molec Phylogen Evol 68:482–497. doi:10.1016/j.ympev.2013.04.027

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Prof Gao LM and two anonymous reviewers for providing constructive comments on an earlier version of the manuscript. We also thank the Xishuangbanna Tropical Botanic Garden for access to their laboratory facilities and the Royal Botanic Garden Edinburgh (RBGE) for access to the herbarium (E). This work was partly funded by the National Science Foundation of China (NSFC-31370245). Fieldwork was supported in part by the Davis Expedition Fund of the University of Edinburgh, the Percy Sladen Memorial Fund, the Royal Horticultural Society and the RBGE Fieldwork Fund. The Royal Botanic Garden Edinburgh is funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jie Li or Michael Möller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The authors comply with all rules of the journal following the COPE guidelines; all authors have contributed and approved the final manuscript.

Additional information

Handling editor: Yunpeng Zhao.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. List of samples of Corallodiscus included in the phylogenetic analysis, plus three outgroup samples, with collector and collection information, population codes and GenBank accession number.

Online Resource 2. Diagnostics of the Bayesian inference analysis of 132 Corallodiscus samples plus three outgroup samples based on ITS sequence data. (a) Bayesian run statistics; (b) plot of generations versus LnL values for run 1; (c) plot of generations versus LnL values for run 2; (d) posterior probabilities of run 1 versus run 2; (e) symmetric topological tree differences within and between MCMC run 1 versus run 2; (f) plot of splits 1–20 sorted by widest range for run 1; (g) plot of splits 1–20 sorted by widest range for run 2. b–g obtained using AWTY (Wilgenbusch et al. 2004).

Online Resource 3. List of samples of Corallodiscus lanuginosus cytologically investigated, with collector and collection information, and population codes.

Online Resource 4. List of samples of Corallodiscus lanuginosus palynologically investigated, with collector and collection information, and population codes.

Online Resource 5. Distribution of ITS base polymorphisms and inferred crosses among samples of Corallodiscus lanuginosus (lan) and C. kingianus (kin).

Online Resource 6. Chromosome counts of Corallodiscus lanuginosus plants with (a) 2n = 20 chromosomes (2013-28-F2-1e) and (b) 2n = 40 chromosomes (2013-03-F3-1i).

Online Resource 7. Pollen measurements of Corallodiscus lanuginosus plants with (a) diploid (PCZ) and (b) tetraploid (JMG) chromosome complements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Li, J. & Möller, M. Secondary contact, hybridization and polyploidization add to the biodiversity in the Hengduan Mountains, exemplified by the widespread Corallodiscus lanuginosus (Gesneriaceae). Plant Syst Evol 303, 587–602 (2017). https://doi.org/10.1007/s00606-017-1392-0

Download citation

Keywords

  • Corallodiscus
  • Gesneriaceae
  • Hengduan Mountains
  • Hybridization
  • Polyploidization
  • Secondary contacts