Plant Systematics and Evolution

, Volume 303, Issue 3, pp 267–282 | Cite as

Spatial patterns and intraspecific diversity of the glacial relict legume species Vavilovia formosa (Stev.) Fed. in Eurasia

  • Petr Smýkal
  • Michala Chaloupská
  • Michael Bariotakis
  • Lucie Marečková
  • Andrey Sinjushin
  • Ivan Gabrielyan
  • Janna Akopian
  • Cengiz Toker
  • Gregory Kenicer
  • Miloslav Kitner
  • Stergios Pirintsos
Original Article

Abstract

Vavilovia formosa is one of five genera in tribe Fabeae, (Fabaceae, Leguminosae) with close phylogenetic relationships to Pisum. It grows in subalpine and alpine levels in Armenia, Azerbaijan, Georgia, Iran, Iraq, Lebanon, Russia and Turkey and is recognized as an endangered and protected plant. This study was conducted to reveal its intraspecific variability, as well as to predict the past, extant and future species distribution range. We analysed 51 accessions with common phylogenetic markers (trnF-trnL, trnS-trnG, matK, rbcL, psbA-trnH and ITS). These represent in total up to 2551 bp of chloroplast and 664 bp of nuclear sequences per sample. Two populations from Turkey and Armenia were analysed for genetic diversity by AFLP. Leaf morphometry was conducted on 1457 leaflets from 43 specimens. Extracted bioclimatic parameters were used for niche-modelling approach. Analysis of cpDNA revealed two haplotypes, 12 samples from Armenia, Daghestan, Nakhichevan and Iran belonged to H1 group, while 39 samples of all Turkish and part of Armenian were in H2 group. The mean intrapopulation diversity based on AFLP was low (HE = 0.088) indicating limited outcrossing rate. A significantly positive correlation between geographical latitude and leaf area (\(\rho\) = 0.527, p < 0.05) was found. Niche modelling has shown temporal variation of predicted occurrence across the projected time periods. Vavilovia formosa has suffered a range reduction following climate warming after last glacial maximum, which classify this species as cold-adapted among the Fabeae species as well as a glacial relict.

Keywords

Conservation Genetic diversity Fabeae Last glacial maximum Population genetics Pisum Relict Vavilovia formosa 

Supplementary material

606_2016_1368_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 173 kb)
606_2016_1368_MOESM2_ESM.fasta (32 kb)
Supplementary material 2 (fasta 33 kb)
606_2016_1368_MOESM3_ESM.pdf (241 kb)
Supplementary material 3 (PDF 240 kb)

References

  1. Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molec Ecol 17:5177–5188. doi:10.1111/j.1365-294X.2008.03971 CrossRefGoogle Scholar
  2. Akopian J, Sarukhanyan N, Gabrielyan I, Vanyan A, Mikić A, Smýkal P, Kenicer G, Vishnyakova M, Sinjushin A, Demidenko N, Ambrose M (2010) Reports on establishing an ex situ site for ‘beautiful’ Vavilovia (Vavilovia formosa) in Armenia. Genet Resources Crop Evol 57:1127–1134. doi:10.1007/s10722-010-9606-0 CrossRefGoogle Scholar
  3. Akopian JA, Gabrielyan IG (2008) On high-mountain pea Vavilovia formosa (Stev.) Fed. (Fabaceae) in Armenia. Crop Wild Relatives Newslett 6:26–27.Google Scholar
  4. Alefeld F (1861) Pisum formosum. Bonplandia 9:327Google Scholar
  5. Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Glob Ecol Biogeogr 18:223–239. doi:10.1111/j.1466-8238.2008.00439.x CrossRefGoogle Scholar
  6. Alsos IG, Ehrich D, Thuiller W et al (2012) Genetic consequences of climate change for northern plants. Proc Roy Soc Biol Sci Ser B 279:2042–2051. doi:10.1098/rspb.2011.2363 CrossRefGoogle Scholar
  7. Atalay I (1996) Palaeosoils as indicators of the climatic changes during Quaternary period in S. Anatolia. J Arid Environ 32:23–35CrossRefGoogle Scholar
  8. Baloyan SA (2004) List of the species of alpine flora of the Central Armenian volcanic highland. Takhtajania, 15:97–107Google Scholar
  9. Boissier E (1856) Diagnoses Plantarum Orientalium novarum, ser. 2, vol. 5. B. Herrmann, LipsiaeGoogle Scholar
  10. Boissier E (1872) Flora Orientalis, vol. 2. H. Georg, Genevae, BasileaeGoogle Scholar
  11. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Molec Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x CrossRefGoogle Scholar
  12. Bosque M, Adamogianni MI, Bariotakis M, Fazan L, Stoffel M, Garfi G, Gratzfeld J, Kozlowski G, Pirintsos S (2014) Fine-scale spatial patterns of the Tertiary relict Zelkova abelicea (Ulmaceae) indicate possible processes contributing to its persistence to climate changes. Regional Environm Change 14:835–849. doi:10.1007/s10113-013-0544-1 CrossRefGoogle Scholar
  13. Bystriakova N, Ansell SW, Russell SJ, Grundmann M, Vogel JC, Schneider H (2014) Present, past and future of the European rock fern Asplenium fontanum: combining distribution modelling and population genetics to study the effect of climate change on geographic range and genetic diversity. Ann Bot (Oxford) 113:453–465. doi:10.1093/aob/mct274 CrossRefGoogle Scholar
  14. Çiplak B (2003) Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickerts in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. Biodivers Conserv 12:47–64CrossRefGoogle Scholar
  15. Daubenmire RF (1943) Vegetational zonation in the Rocky Mountains. Bot Rev 9:325–393. doi:10.1007/BF02872481 CrossRefGoogle Scholar
  16. Davis PH (1970a) Lathyrus. In: Davis PH (ed) Flora of Turkey, 3rd edn. Edinburgh University Press, Edinburgh, vol. 3, pp 328–369Google Scholar
  17. Davis PH (1970b) Vavilovia A. Fed. In: Davis PH (ed) Flora of Turkey and East Aegean Islands, vol 3. Edinburg University Press, UK, pp. 44–45Google Scholar
  18. Davis PH (1970c) Pisum L. In: Davis PH (ed) Flora of Turkey and East Aegean Islands. Vol 3. University Press, Edinburg, pp 370–373Google Scholar
  19. Deniz UG, Sümbül H (2004) Flora of the Elmali Cedar Research Forest (Antalya/Turkey). Turk J Bot 28:529–555Google Scholar
  20. Dolukhanov A (1989) Rastitel’nost’ Gruzii (Vegetation of Georgia). v. 1. Metsniereba, Tbilisi (in Russian) Google Scholar
  21. Earl DA, von Holdt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genet Resources 4:359–361. doi:10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  22. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604. doi:10.1111/j.1471-8286.2006.01380.x CrossRefGoogle Scholar
  23. Ekim T, Güner A (1986) The Anatolian Diagonal: fact or fiction? Proceedings of the Royal Society of Edinburgh 89B:69–77Google Scholar
  24. Eliášová A, Trávníček P, Mandák B, Münzbergová Z (2014) Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids. Ann Bot (Oxford) 113:159–170. doi:10.1093/aob/mct252 CrossRefGoogle Scholar
  25. Endo Y, Choi BH, Ohashi H, Delgado-Salinas A (2008) Phylogenetic relationships of New World Vicia (Leguminosae) inferred from nrDNA internal transcribed spacer sequences and floral characters. Syst Bot 33:356–363CrossRefGoogle Scholar
  26. Eren Ö, Gökçeolu M, Parolly G (2004) The flora and vegetation of Bakirli Dagi (Western Taurus Mts, Turkey), including annotations on critical taxa of the Taurus range. Willdenowia 34:463–502CrossRefGoogle Scholar
  27. Erinç S (1978) Changes in the physical environment in Turkey since the end of the last glacial. In: Brice WC (ed) The environmental history of the Near and Middle East since the last Ice Age. Academic Press, London, p 87–110Google Scholar
  28. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molec Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  29. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Resources 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  30. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x CrossRefGoogle Scholar
  31. Fedorov AA (1939) Wild high-mountain peas of Caucasus. Trans Biol Inst 1:39–79 (in Russian)Google Scholar
  32. Fedorov AA (1952) Supplement. In: Grossheim AA (ed) Flora of the Caucasus 5. Academy of Science of the USSR, Petersburg, p 453 (in Russian)Google Scholar
  33. Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7:123–139. doi:10.1111/eva.12112 CrossRefPubMedGoogle Scholar
  34. Govorov LI (1937) Pisum. In: Vavilov NI, Wulff EV (eds) Flora of cultivated plants IV: grain leguminosae. State Agricultural Publishing Company, Moscow, pp 231–336Google Scholar
  35. Grichuk VP (1984) Late Pleistocene vegetation history. In: Velichko AA, Wright HE, Barnosky CW (eds) Late Quaternary Environments of the Soviet Union. University of Minessota Press. Mineapolis, pp 155–178Google Scholar
  36. Grossheim AA (1949) Identification of plants of the Caucasus. Sovetskaya Nauka, Moscow (in Russian)Google Scholar
  37. Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conservation Biol 20:501–511. doi:10.1111/j.1523-1739.2006.00354.x CrossRefGoogle Scholar
  38. Gunn C, Kluve RJ (1976) Androecium and pistil characters for the tribe Vicieae (Fabaceae). Taxon 25:563–575CrossRefGoogle Scholar
  39. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annual Rev Ecol Evol Syst 42:313–333. doi:10.1146/annurev-ecolsys-102710-145015 CrossRefGoogle Scholar
  40. Härstedt E (1950) Über die Vererbung der Form von Laub- und Kelchblättern von Pisum sativum. Agric Hort Genet 8:7–32Google Scholar
  41. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112. doi:10.1111/j.1095-8312.1999.tb01160.x CrossRefGoogle Scholar
  42. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587. doi:10.1016/S0960-9822(06)00257-0 CrossRefPubMedGoogle Scholar
  43. Hu JM (2000) Phylogenetic relationships of the tribe Millettieae and allies—the current status. In: Herendeen PS, Bruneau A (eds) Advances in legume systematics. Royal Botanic Garden, Kew, UK, p 299–310Google Scholar
  44. Jing R, Ambrose MA, Knox MR, Smykal P, Hybl M, Ramos Á, Caminero C, Burstin J, Duc G, van Soest LJM, Swiecicki WK, Pereira G, Vishnyakova M, Davenport G, Flavell AJ, Ellis THN (2012) Genetic diversity in European pisum germplasm collections. Theor Appl Genet 125:367–380. doi:10.1007/s00122-012-1839-1 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44. doi:10.1186/1471-2148-10-44 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Joannin S, Cornee J, Munch P et al (2010) Early Pleistocene climate cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy, and 40Ar/39Ar dating. Earth Planet Sci Lett 291:149–158. doi:10.1016/j.epsl.2010.01.007 CrossRefGoogle Scholar
  47. Kato H, Oginuma K, Gu Z, Hammel B, Tobe H (1998) Phylogenetic relationships of Betulaceae based of matK sequences with particular reference to the position of Ostryopsis. Acta Phytotax. Geobot 49:89–97Google Scholar
  48. Kenicer G, Smýkal P, Vishnyakova M, Mikič A (2009) Vavilovia formosa, an intriguing Pisum relative. Grain Legum 51:8–12Google Scholar
  49. Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Amer J Bot 92:1199–1209. doi:10.3732/ajb.92.7.1199 CrossRefGoogle Scholar
  50. Kitner M, Lebeda A, Doležalová I, Maras M, Křístková E, Nevo E, Pavlíček T, Meglič V, Beharav A (2008) AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle East countries. Israel J Pl Sci 56:185–193CrossRefGoogle Scholar
  51. Kupicha FK (1981) Vicieae (Adans.) DC. (1825) nom conserv prop. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Botanical Garden, KewGoogle Scholar
  52. Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes Roy Bot Gard Edinburgh 41:209–244Google Scholar
  53. Lavin M, Alfonso Delgado SA (1990) Pollen brush of Papilionoideae (Leguminosae): morphological variation and systematic utility. Amer J Botany 10:1294–1312CrossRefGoogle Scholar
  54. Lehman CO, Blixt S (1984) Artificial intraspecific classification in relation to phenotypic manifestation of certain genes in Pisum. Agric Hort Genet 42:49–74Google Scholar
  55. Lock M, Maxted N (2005) Tribe Fabeae. In: Lewis G, Schrire B, Mackinder B, Lock M (eds) Legumes of the World. Royal Botanic Gardens, KewGoogle Scholar
  56. Loridon K, McPhee KE, Morin J et al (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031. doi:10.1007/s00122-005-0014-3 CrossRefPubMedGoogle Scholar
  57. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Molec Ecol 3:91–99. doi:10.1111/j.1365-294X.1994.tb00109.x CrossRefGoogle Scholar
  58. Makasheva RK (1983) Gorokh (pea). Kolos, Leningrad (in Russian)Google Scholar
  59. Makasheva RK, Drozd AM, Adamova OP, Golubev AA (1973) Perennial pea. Bull Appl Bot Genet Pl Breed 51:44–56 (in Russian)Google Scholar
  60. Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer, Dordrecht, pp 181–190CrossRefGoogle Scholar
  61. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. doi:10.1111/j.1365-2699.2008.02051.x CrossRefGoogle Scholar
  62. Mikič A, Smýkal P, Kenicer G, Vishnyakova M, Sarukhanyan N, Akopian J, Vanyan A, Gabrielyan I, Smýkalová I, Sherbakova E, Zorić L, Atlagić J, Zeremski-Škorić T, Cupina B, Krstić Ð, Jajić I, Antanasović S, Ðorđević V, Mihailović V, Ivanov A, Ochatt S, Ambrose M (2013) The bicentenary of the research on ‘beautiful’ Vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Bot J Linn Soc 172:524–531. doi:10.1111/boj.12060 CrossRefGoogle Scholar
  63. Mikič A, Smýkal P, Kenicer G, Vishnyakova M, Sarukhanyan N, Akopian JA, Vanyan A, Gabrielyan I, Smýkalová I, Sherbakova E, Zorić L, Atlagić J, Zeremski-Škorić T, Cupina B, Krstić D, Jajić I, Antanasović S, Dorđević V, Mihailović V, Ivanov A, Ochatt S, Toker C, Zlatković B, Ambrose M (2014) Beauty will save the world, but will the world save beauty? The case of the highly endangered Vavilovia formosa (Stev.) Fed. Planta 240:1139–1146. doi:10.1007/s00425-014-2136-9 CrossRefPubMedGoogle Scholar
  64. Nakhutsrishvili G (2013) High-mountain vegetation. In: Nakhutsrishvili G (ed) The vegetation of Georgia (South Caucasus). Springer, Berlin, pp 119–208CrossRefGoogle Scholar
  65. Namba T (1984) Competitive co-existence in a seasonally fluctuating environment. J Theor Biol 111:369–386. doi:10.1016/S0022-5193(84)80216-7 CrossRefGoogle Scholar
  66. Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Pl Biol 38:535–552CrossRefGoogle Scholar
  67. Ohlemüller R, Anderson BJ, Araújo MB, Butchart SH, Kudrna O, Ridgely RS, Thomas CD (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572. doi:10.1098/rsbl.2008.0097 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Oskoueiyan R, Kazempour OS, Maassoumi AA, Nejadsattari T, Mozaffarian V (2010) Phylogenetic status of Vavilovia formosa (Fabaceae-Fabeae) based on nrDNA ITS and cpDNA sequences. Biochem Syst Ecol 38:313–319. doi:10.1016/j.bse.2010.01.011 CrossRefGoogle Scholar
  69. Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753. doi:10.1126/science.1120808 CrossRefGoogle Scholar
  70. Pescador DS, de Bello F, Valladares F, Escudero A (2015) Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect. PLoS ONE 10:e0118876. doi:10.1371/journal.pone.0118876 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Phillips SJ, Anderson RP, Schapired RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  72. Potokina E, Blattner R, Alexandrova T, Bachmann K (2002) AFLP diversity in the common vetch (Vicia sativa L.) on the world scale. Theor Appl Genet 105:58–67. doi:10.1007/s00122-002-0866-8 CrossRefPubMedGoogle Scholar
  73. Prévost D, Drouin P, Antoun H (1999) The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R, Schninner F (eds) Fundamentals and application of cold-adapted organisms. Springer, Heidelberg, pp 161–176Google Scholar
  74. Reshiger KH (1979) Lathyrus. In: Reshinger KH (ed) Flora Iranica, 140th edn. Akademische druck und Verlagsansalt, Graz, AustriaGoogle Scholar
  75. Rohlf FJ (1997) NTSYS: numerical taxonomy and multivariate analysis system, version 2.0. Exeter Software, SetauketGoogle Scholar
  76. Rohlf FJ (2010) Tps Series. Department of ecology and evolution, State University of New York, Stony Brook. Available at: http://life.bio.sunysb.edu/morph/
  77. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  78. Safronova VI, Kimeklis AK, Chizhevskaya EP, Belimov AA, Andronov EE, Pinaev AG, Pukhaev AR, Popov KP, Tikhonovich IA (2014) Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed. Antonie  van  Leeuwenhoek  J  Microbiol  Serol 105:389–399. doi:10.1007/s10482-013-0089-9 CrossRefGoogle Scholar
  79. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA, Andronov EE, Pinaev AG, Chizhevskaya EP, Pukhaev AR, Popov KP, Willems A, Tikhonovich IA (2015) Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie  van  Leeuwenhoek  J  Microbiol  Serol 107:911–920. doi:10.1007/s10482-015-0383-9 CrossRefGoogle Scholar
  80. Sayadyan YV (2006) Upper miocene, pliocene, and quaternary stratigraphic reference sections of large intermontane depressions in Armenia. Doklady Earth Sci 407:217–219CrossRefGoogle Scholar
  81. Schaefer H, Hechenleitner P, Santos-Guerra A, Menezes de Sequeira M, Pennington RT, Kenicer G, Carine MA (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol 12:250. doi:10.1186/1471-2148-12-250 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schlee M, Göker M, Grimm GW, Hemleben V (2011) Genetic patterns in the Lathyrus pannonicus complex (Fabaceae) reflect ecological differentiation rather than biogeography and traditional subspecific division. Bot J Linn Soc 165:402–421. doi:10.1111/j.1095-8339.2011.01125.x CrossRefGoogle Scholar
  83. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572. doi:10.1111/j.1471-8286.2006.01225.x CrossRefGoogle Scholar
  84. Schoener TW (1968) Anolis lizards in Bimini: resource partitioning in a complex fauna. Ecology 49:704–726CrossRefGoogle Scholar
  85. Sinjushin AA, Akopian JA (2011) On seedling structure in Pisum L., Lathyrus L. and Vavilovia Fed. (Fabeae: Fabaceae). Wulfenia 18:81–93Google Scholar
  86. Sinjushin AA, Belyakova AS (2010) On intraspecific variation of Vavilovia formosa (Stev.) Fed. (=Pisum formosum (Stev.) Alef.: Fabeae). Pisum Genet 42:31–34Google Scholar
  87. Sinjushin AA, Demidenko NV, Gostimskii SA (2009) Preliminary report on taxonomical position of Vavilovia formosa (Stev.) Fed. evidenced from morphological and molecular data. Pisum Genet 41:15–20Google Scholar
  88. Smýkal P, Coyne C, Ambrose M, Maxted N, Schaefer H, Blair MW, Berger J, Greene SL, Nelson MN, Besharat N, Vymyslický T, Toker C, Saxena RK, Roorkiwal M, Pandey MK, Hu J, Li YH, Wang LX, Guo Y, Qiu LJ, Redden RJ, Varshney RK (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Pl Sci 34:43–104. doi:10.1080/07352689.2014.897904 CrossRefGoogle Scholar
  89. Smýkal P, Kenicer G, Flavell AJ, Corander J, Kosterin O, Redden RJ, Ford R, Coyne CJ, Maxted N, Ambrose MJ, Ellis THN (2011) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Pl Genet Resources 9:4–18. doi:10.1017/S147926211000033x CrossRefGoogle Scholar
  90. Soudzilovskaia NA, Elumeeva TG, Onipchenko VG et al (2013) Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc Natl Acad Sci USA 110:18180–18184. doi:10.1073/pnas.1310700110 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Speed JDM, Austrheim G, Hester AJ, Mysterud A (2012) Elevational advance of alpine plant communities is buffered by herbivory. J Veg Sci 23:617–625. doi:10.1111/j.1654-1103.2012.01391.x CrossRefGoogle Scholar
  92. Steele KP, Wojciechowski MF (2003) Phylogenetic analyses of tribes Trifolieae and Vicieae, based on sequences of the plastid gene matK (Papilionoideae: Leguminosae). In: Klitgaard BB, Bruneau A (eds) Advances in Legume Systematics, 10th edn. Royal Botanical Garden, Kew, pp 355–370Google Scholar
  93. Steven C (1812) Orobus formosus Steven. Mém Soc Imp Naturalistes Moscou 4:50Google Scholar
  94. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc Roy Soc London Ser B Biol Sci 277:661–671. doi:10.1098/rspb.2009.1272 CrossRefGoogle Scholar
  95. Tarkhnishvili D, Gavashelishvili A, Mumladze L (2012) Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol J Linn Soc 105:231–248. doi:10.1111/j.1095-8312.2011.01788.x CrossRefGoogle Scholar
  96. Tarasov PE, Volkova VS, Webb T et al (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620. doi:10.1046/j.13652699.2000.00429.x CrossRefGoogle Scholar
  97. Tamanyan K, Fayvush G, Nanagyulyan S, Danielyan T (eds) (2010) The Red Book of plants of Armenian Republic (higher plants and fungi). Zangak, YerevanGoogle Scholar
  98. Tomooka N, Yoon MS, Doi K, Kaga A, Vaughan D (2002) AFLP analysis of diploid species in the genus Vigna subgenus Ceratotropis. Genet Resources Crop Evol 49:521–530. doi:10.1023/A:1020954800107 CrossRefGoogle Scholar
  99. Townsend CC, Guest E (eds) (1974) Flora of Iraq, vol. 3. Ministry of Agriculture & Agrarian Reform, Baghdad Google Scholar
  100. Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28:696–704. doi:10.1016/j.tree.2013.09.001 CrossRefPubMedGoogle Scholar
  101. van de Wouw M, Maxted N, Chabane K, Ford-Lloyd BV (2001) Molecular taxonomy of Vicia ser. Vicia based on amplified fragment length polymorphisms. Pl Syst Evol 229:95–105. doi:10.1007/s006060170020 Google Scholar
  102. Vos P, Hogers R, Bleeker M et al (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acid Res 23:4407–4414CrossRefPubMedPubMedCentralGoogle Scholar
  103. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883. doi:10.1111/j.1558-5646.2008.00482.x CrossRefPubMedGoogle Scholar
  104. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. doi:10.1111/j.1600-0587.2009.06142.x CrossRefGoogle Scholar
  105. Watanabe S et al (2011) MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. doi:10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  106. Webb T, Bartlein PJ (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Ann Rev Ecol Syst 23:141–173CrossRefGoogle Scholar
  107. Wu QB, Dong XF, Liu YZ, Jin HJ (2007) Responses of permafrost on the Qinghai–Tibet Plateau, China, to climate change and engineering construction. Arct Antarct Alp Res 39:682–687. doi:10.1029/2006JF000631 CrossRefGoogle Scholar
  108. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Molec Biol Rev 63:968–989Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Petr Smýkal
    • 1
  • Michala Chaloupská
    • 1
  • Michael Bariotakis
    • 2
  • Lucie Marečková
    • 1
  • Andrey Sinjushin
    • 3
  • Ivan Gabrielyan
    • 4
  • Janna Akopian
    • 4
  • Cengiz Toker
    • 5
  • Gregory Kenicer
    • 6
  • Miloslav Kitner
    • 1
  • Stergios Pirintsos
    • 2
  1. 1.Department of Botany, Faculty of SciencesPalacký University in OlomoucOlomouc-HoliceCzech Republic
  2. 2.Department of Biology and Botanical GardenUniversity of CreteHeraklionGreece
  3. 3.Department of GeneticsLomonosov Moscow State UniversityMoscowRussia
  4. 4.National Academy of SciencesInstitute of BotanyYerevanArmenia
  5. 5.Akdeniz UniversityAntalyaTurkey
  6. 6.Royal Botanical Garden EdinburghEdinburghUK

Personalised recommendations