Advertisement

Plant Systematics and Evolution

, Volume 303, Issue 2, pp 203–219 | Cite as

Comparative wood anatomy of the Cupressaceae and correspondence with phylogeny, with special reference to the monotypic taxa

  • Elena Román-Jordán
  • Luis G. Esteban
  • Paloma de Palacios
  • Francisco G. Fernández
Original Article

Abstract

Wood anatomy is one of the tools used for taxonomic classification of species. By combining this tool with molecular phylogeny, the current groupings made in morphological studies can be discussed. This study describes the wood anatomy of the monotypic genera of Cupressaceae and analyses the features that could represent synapomorphies of the principal clades recovered by molecular phylogeny. The wood anatomical study shows the high homogeneity of this family, revealing the presence of common ancestral features that support the union between Taxodiaceae and Cupressaceae s.s. and the separation of Sciadopitys. It also supports the group formed by Taxodiaceae in Cupressaceae s.l. No clear division was observed between the callitroid and cupressoid clades. Some wood anatomical differences were observed in the FitzroyaDiselmaPilgerodendron and MicrobiotaPlatycladusTetraclinis associations. The wood anatomical features common to the family, such as axial tracheids without helical thickenings, homogeneous rays, cupressoid cross-field pits and the presence of a warty layer, are put forward as possible synapomorphies for Cupressaceae s.l. The clade-specific synapomorphies are taxodioid cross-field pits for taxodioid and sequoioid clades, absence of a well-defined torus in ThujaThujopsis and torus extensions in DiselmaFitzroyaWiddringtonia.

Keywords

Anatomy Cupressaceae Phylogeny Taxodiaceae Wood 

Notes

Acknowledgements

The authors are grateful to the research centres that provided samples for this study and to the Jodrell Laboratory and Kew Gardens libraries for the documentation provided for the study of the literature.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bailey IW, Faull AF (1934) The cambium and its derivative tissues. IX. Structural variability in the redwood Sequoia sempervirens, and its significance in the identification of fossil woods. J Arnold Arbor 15:233–254Google Scholar
  2. Bannan MW (1934) Origin and cellular character of xylem rays in gymnosperms. Bot Gaz 96:260–281CrossRefGoogle Scholar
  3. Barefoot AC, Hankins FW (1982) Identification of modern and tertiary woods. Oxford University Press, New YorkGoogle Scholar
  4. Belyea H (1919) Ray tracheid structure in second growth Sequoia washingtoniana. Bot Gaz 68:467–473CrossRefGoogle Scholar
  5. Benkova VE, Schweingruber FH (2004) Anatomy of Russian woods. An atlas for the identification of trees, shrubs, dwarf shrubs and woody lianas from Russia. Haupt Verlag, BernaGoogle Scholar
  6. Bliss MC (1918) Interrelationships of the Taxineae. Bot Gaz 66:54–60CrossRefGoogle Scholar
  7. Brown HP, Panshin AJ (1940) Commercial timbers of the United States: their structure, identification, properties, and uses. McGraw-Hill, New YorkGoogle Scholar
  8. Brown HP, Panshin AJ, Forsaith CC (1949) Textbook of wood technology. McGraw-Hill, New YorkGoogle Scholar
  9. Brunsfeld SJ, Soltis PS, Soltis DE, Gadek PA, Quinn CJ, Strenge DD, Ranker TA (1994) Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Syst Bot 19:253–262CrossRefGoogle Scholar
  10. Carvalho A (1996) Madeiras Portuguesas. Estrutura anatómica, propriedades e utilizações, vol II. Direcção Geral das Florestas, LisboaGoogle Scholar
  11. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580CrossRefGoogle Scholar
  12. Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH (1997) Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Molec Biol Evol 14:56–68CrossRefPubMedGoogle Scholar
  13. Dallimore W, Jackson AB (1923) A handbook of Coniferae including Ginkgoaceae. Edward Arnold & Co, LondonGoogle Scholar
  14. de Palacios P, Esteban LG, García Fernández F, García-Iruela A, Conde M, Román-Jordán E (2014) Comparative wood anatomy of Juniperus from Macaronesia. IAWA J 35:186–198CrossRefGoogle Scholar
  15. Detienne P, Jacquet P (1993) Identification des bois de l’île de la Réunion. CIRAD-Forêt, MontpellierGoogle Scholar
  16. Díaz-Vaz JE (1983) Fitzroya cupressoides, descripción anatómica. Bosque 5:47–49CrossRefGoogle Scholar
  17. Dute R, Hagler L, Black A (2008) Comparative development of intertracheary pit membranes in Abies firma and Metasequoia glyptostroboides. IAWA J 29:277–289CrossRefGoogle Scholar
  18. Eckenwalder JE (1976) Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23:237–256Google Scholar
  19. Esteban LG, Guindeo A, de Palacios P (1996) Madera de coníferas. Anatomía de géneros. Fundación Conde Del Valle de Salazar, MadridGoogle Scholar
  20. Esteban LG, Guindeo A, de Palacios P (2000) Clave de identificación de maderas de coníferas a nivel de especie. Región europea y norteamericana. Invest Agrar Sist Recurs Forest 9:117–136Google Scholar
  21. Esteban LG, de Palacios P, Guindeo A, García-Esteban L, Lázaro I, González L, Rodriguez Y, García F, Bobadilla I, Camacho A (2002) Anatomía e identificación de maderas de coníferas a nivel de especie. Anatomy and identification of coniferous wood as a species. Fundación Conde del Valle de Salazar, Ediciones Mundi-Prensa, MadridGoogle Scholar
  22. Esteban LG, de Palacios P, Guindeo A, García F (2004) Characterisation of the xylem of 352 conifers. Invest Agrar Sist Recurs Forest 13:452–478Google Scholar
  23. Esteban LG, de Palacios P, García-Iruela A, Román-Jordán E, Fernández FG, Díaz Fernández S, Conde M (2015) Wood anatomy of Tetraclinis articulata from its natural distribution area in southeast Spain. IAWA J 36:22–35Google Scholar
  24. Farjon A (2001) World checklist and bibliography of conifers, 2nd edn. Royal Botanic Gardens, KewGoogle Scholar
  25. Fujii T, Suzuki Y, Kuroda N (1997) Bordered pit aspiration in the wood of Cryptomeria japonica in relation to air permeability. IAWA J 18:69–76CrossRefGoogle Scholar
  26. Gadek P, Quinn C (1993) An analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Ann Missouri Bot Gard 80:581–586CrossRefGoogle Scholar
  27. Gadek PA, Alpers DL, Heslewood MM, Quinn CJ (2000) Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Amer J Bot 87:1044–1057CrossRefGoogle Scholar
  28. Gasson P, Baas P, Wheeler E (2011) Wood anatomy of CITES-listed tree species. IAWA J 32:155–198CrossRefGoogle Scholar
  29. Gaussen H (1968) Les gymnospermes actuelles et fossiles. Fascicule X. Les Cupressacées. Faculté des Sciences, ToulouseGoogle Scholar
  30. Gordon M (1912) Ray tracheids in Sequoia sempervirens. New Phytol 11:1–6CrossRefGoogle Scholar
  31. Greguss P (1955) Identification of living gymnosperms on the basis of xylotomy. Akadémiai Kiadó, BudapestGoogle Scholar
  32. Greguss P (1972) Xylotomy of the living conifers. Akadémiai Kiadó, BudapestGoogle Scholar
  33. Gromyko D (1982) Comparative anatomical study of wood in the family Taxodiaceae. Bot Zhurn (Moscow & Leningrad) 67:898–906Google Scholar
  34. Gugerli F, Sperisen Ch, Buchler U, Brunner I, Brodbeck S, Palmer JD, Qiu Y (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Molec Phylogen Evol 21:167–175CrossRefGoogle Scholar
  35. Harrar ES (1957) Hough’s encyclopaedia of American woods, vol I. Robert Speller and Sons, New YorkGoogle Scholar
  36. Hart JA (1987) A cladistic analysis of conifers: preliminary results. J Arnold Arbor 68:269–307Google Scholar
  37. Heady RD, Evans PD (2000) Callitroid (callitrisoid) thickening in Callitris. IAWA J 21:293–319CrossRefGoogle Scholar
  38. Heady RD, Evans PD (2005) Wood anatomy of Actinostrobus (Cupressaceae). IAWA J 26:79–92CrossRefGoogle Scholar
  39. Hejnowicz A (1973) Anatomical studies on the development of Metasequoia glyptostroboides Hu et Cheng wood. Acta Soc Bot Poloniae 42:473–491CrossRefGoogle Scholar
  40. Holden R (1913) Ray tracheids in the Coniferales. Bot Gaz 55:56–65CrossRefGoogle Scholar
  41. IAWA Committee (2004) IAWA list of microscopic features for softwood identification. IAWA J 25:1–70CrossRefGoogle Scholar
  42. Jacquiot C (1955) Atlas d’anatomie des bois des conifères. Centre Technique du Bois, ParisGoogle Scholar
  43. Jane FW (1970) The structure of wood, 2nd edn. Adam & Charles Black, LondonGoogle Scholar
  44. Jeffrey EC (1903) The comparative anatomy and phylogeny of the Coniferales. I. The genus Sequoia. Mem Boston Soc Nat Hist 5:441–459Google Scholar
  45. Jeffrey EC (1908) Traumatic ray-tracheids in Cunninghamia sinensis. Ann Bot (Oxford) 22:593–602Google Scholar
  46. Jeffrey EC (1917) The anatomy of woody plants. University of Chicago Press, ChicagoGoogle Scholar
  47. Jeffrey EC (1925) Resin canals in the evolution of the Conifers. Proc Natl Acad Sci USA 11:101–105CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jiang XM, Cheng YM, Yin YF (2010) Atlas of gymnosperms woods of China. Science Press, BeijingGoogle Scholar
  49. Jones WS (1912) The structure of the timbers of some common genera of coniferous trees. Quart J Forest 6:112–134  Google Scholar
  50. Jones WS (1924) Timbers, their structure and identification. The Clarendon Press, OxfordGoogle Scholar
  51. Kaeiser M (1953) Microstructure of the wood of Juniperus. Bot Gaz 115:155–162CrossRefGoogle Scholar
  52. Kanehira R (1921) Anatomical characters and identification of Formosan woods with critical remarks from the climatic point of view. Bureau of Productive Industries, Government of Formosana, TaihokuGoogle Scholar
  53. Kitin P, Fujii T, Abe H, Takata K (2009) Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Ann Bot (Oxford) 103:1145–1157CrossRefGoogle Scholar
  54. Kobayashi Y (1956) Some new data on the anatomical characters of softwoods. JWRS J 2:119–120Google Scholar
  55. Kukachka BF (1960) Identification of coniferous woods. Tappi 43(11):887–896Google Scholar
  56. Kusumi J, Tsumura Y, Yoshimaru H, Tachida H (2000) Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. Amer J Bot 87:1480–1488CrossRefGoogle Scholar
  57. Liang H, Chow KY, Au CN (1948) Properties of a “living-fossil” wood (Metasequoia glyptostroboides Hu et Cheng). Wood Technol 1:1–6Google Scholar
  58. Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis, version 3.04. Available at: http://mesquiteproject.org
  59. Mao K, Milne RI, Zhang L, Peng Y, Liu J, Thomas P, Mill RR, Renner SS (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Natl Acad Sci USA 109:7793–7798CrossRefPubMedPubMedCentralGoogle Scholar
  60. Patton RT (1927) Anatomy of Australian coniferous timbers. Proc Roy Soc Victoria 40:1–16CrossRefGoogle Scholar
  61. Peirce AS (1935) Anatomy of the xylem of Sciadopitys. Amer J Bot 22:895–902CrossRefGoogle Scholar
  62. Peirce AS (1936) Anatomical interrelationships of the Taxodiaceae. Trop Woods 46:1–15Google Scholar
  63. Peirce AS (1937) Systematic anatomy of the woods of the Cupressaceae. Trop Woods 49:5–21Google Scholar
  64. Phillips EWJ (1941) The identification of coniferous woods by their microscopic structure. Bot J Linn Soc 52:259–320CrossRefGoogle Scholar
  65. Phillips EWJ (1948) Identification of softwoods by their microscopic structure. No. 22. HMSO Department of Scientific and Industrial Research, LondonGoogle Scholar
  66. Quinn CJ, Price RA, Gadek PA (2002) Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bull 57:513–531CrossRefGoogle Scholar
  67. Record SJ, Wiley J (1934) Identification of the timbers of temperate North America. Wiley, New YorkGoogle Scholar
  68. Roig FA (1992) Comparative wood anatomy of southern South American Cupressaceae. IAWA Bull 13:151–162CrossRefGoogle Scholar
  69. Shimakura M (1937) Anatomy of the wood of Taiwania. Bot Mag 51:694–700CrossRefGoogle Scholar
  70. Stefanović S, Jager M, Deutsch J, Broutin J, Masselot M (1998) Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Amer J Bot 85:688–697CrossRefGoogle Scholar
  71. Stone H (1904) The timbers of commerce and their identification. William Rider and Son, LondonGoogle Scholar
  72. Terry RG, Bartel JA, Adams RP (2012) Phylogenetic relationships among the New World cypresses (Hesperocyparis; Cupressaceae): evidence from noncoding chloroplast DNA sequences. Pl Syst Evol 298:1987–2000CrossRefGoogle Scholar
  73. Thompson WP (1910) The origin of ray tracheids in the Coniferae. Bot Gaz 50:101–116CrossRefGoogle Scholar
  74. Tortorelli LA (1956) Maderas y bosques argentinos. ACME, S.A.C.I., Buenos AiresGoogle Scholar
  75. Tsumura Y, Yoshimura K, Tomaru N, Ohba K (1995) Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theor Appl Genet 91:1222–1236CrossRefPubMedGoogle Scholar
  76. Valley H, Wycombe H (1971) Microscopical identification of softwoods: key to those principally used in Great Britain. Timber Research and Development Association, High WycombeGoogle Scholar
  77. Visscher GE, Jagels R (2003) Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA J 24:439–451CrossRefGoogle Scholar
  78. Wang WP, Hwang CY, Lin TP, Hwang SY (2003) Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Pl Syst Evol 241:13–28CrossRefGoogle Scholar
  79. WCSP (2014) World checklist of selected plant families. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://apps.kew.org/wcsp/. Accessed 7 Jul 2014
  80. Willebrand G (1995) Untersuchung von ausgewählten mikroanatomische Merkmalen zur Bestimmung von Nadelhölzern. Ph.D. diss. University of Applied Sciences, RosenheimGoogle Scholar
  81. Xiaomei J, Ying Z (1989) Studies on the warty layers of the tracheids of the Chinese gymnospermous woods by electron microscopy. Sci Silvae Sin 25:58–70Google Scholar
  82. Yang KC, Yang YH (1987) Minute structure of Taiwanese woods. Hua Shiang Yuan Publishing Co., TaipeiGoogle Scholar
  83. Yang ZY, Ran JH, Wang XQ (2012) Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molec Phylogen Evol 64:452–470CrossRefGoogle Scholar
  84. Young D, Watson L (1969) Softwood structure and the classification of conifers. New Phytol 68:427–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Elena Román-Jordán
    • 1
  • Luis G. Esteban
    • 1
  • Paloma de Palacios
    • 1
  • Francisco G. Fernández
    • 1
  1. 1.Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de MontesMadridSpain

Personalised recommendations