Advertisement

Plant Systematics and Evolution

, Volume 303, Issue 1, pp 61–70 | Cite as

The first complete plastome sequence of the basal asterid family Styracaceae (Ericales) reveals a large inversion

  • Minghui Yan
  • Michael J. Moore
  • Aiping Meng
  • Xiaohong Yao
  • Hengchang Wang
Original Article

Abstract

Plastome sequences are rich sources of information for resolving difficult phylogenetic relationships and provide genomic data for conservation studies. Here, the complete plastome sequence of Alniphyllum eberhardtii Guillaumin is reported, representing the first plastome of the basal asterid family Styracaceae (Ericales). The plastome is 155,384 bp in length and contains 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes, totaling 113 unique genes with 19 genes in the inverted repeat region. Unusual features of the plastome include the presence a large 20-kb inversion in the Large Single-Copy region, the pseudogenization of the accD gene, and the loss of the second intron from clpP. The 20-kb inversion includes 14 genes and has not been previously reported in other Ericales plastomes. Thirty-nine plastid simple sequence repeats (SSRs) that may provide genetic resources for the conservation of this economically import timber plant are characterized. Phylogenetic results inferred from ML and MP analyses of 66 plastid genes and 26 taxa reveal that the Styracaceae are sister to a clade including Actinidiaceae and Ericaceae and suggest that complete plastomes are likely to be very helpful in resolving the basal relationships among Ericales families, which have resisted resolution in smaller phylogenetic data sets.

Keywords

Alniphyllum eberhardtii Ericales Inversion Phylogenomics Plastome Styracaceae 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31370223 and 31070191).

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary material

606_2016_1352_MOESM1_ESM.pdf (112 kb)
Online Resource 1 Supplementary material 1 (PDF 111 kb)
606_2016_1352_MOESM2_ESM.pdf (106 kb)
Online Resource 2 Supplementary material 2 (PDF 106 kb)
606_2016_1352_MOESM3_ESM.pdf (100 kb)
Online Resource 3 Supplementary material 3 (PDF 99 kb)
606_2016_1352_MOESM4_ESM.pdf (118 kb)
Online Resource 4 Supplementary material 4 (PDF 117 kb)
606_2016_1352_MOESM5_ESM.pdf (317 kb)
Online Resource 5 Supplementary material 5 (PDF 317 kb)

References

  1. Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard 85:531–553CrossRefGoogle Scholar
  2. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436. doi: 10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  3. Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121. doi: 10.1111/j.1095-8339.2009.00996.x CrossRefGoogle Scholar
  4. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. doi: 10.1111/boj.12385 CrossRefGoogle Scholar
  5. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215:403–410. doi: 10.1006/jmbi.1990.9999 CrossRefPubMedGoogle Scholar
  6. Anderberg AA, Rydin C, Källersjö M (2002) Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. Amer J Bot 89:677–687CrossRefGoogle Scholar
  7. Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, Kallersjo M, Barkhordarian E (2002) Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Molec Phylogen Evol 24:274–301. doi: 10.1016/s1055-7903(02)00240-3 CrossRefGoogle Scholar
  8. Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15:5958–5964PubMedPubMedCentralGoogle Scholar
  9. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molec Biol Evol 23:2175–2190. doi: 10.1093/molbev/msl089 CrossRefPubMedGoogle Scholar
  10. Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429. doi: 10.1007/s002940050225 CrossRefPubMedGoogle Scholar
  11. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  12. Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89:7722–7726. doi: 10.1073/pnas.89.16.7722 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Molec Phylogen Evol 5:429–438. doi: 10.1006/mpev.1996.0038 CrossRefGoogle Scholar
  14. Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, Zalapa JE (2013) Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes 9:489–498. doi: 10.1007/s11295-012-0573-9 CrossRefGoogle Scholar
  15. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucl Acids Res 32:W273–W279. doi: 10.1093/nar/gkh458 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fritsch PW, Morton CM, Chen T, Meldrum C (2001) Phylogeny and biogeography of the Styracaceae. Int J Pl Sci 162:S95–S116. doi: 10.1086/323418 CrossRefGoogle Scholar
  17. Gao L, Su YJ, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93. doi: 10.1111/j.1759-6831.2010.00071.x CrossRefGoogle Scholar
  18. Geuten K, Smets E, Schols P, Yuan YM, Janssens S, Kupfer P, Pyck N (2004) Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. Molec Phylogen Evol 31:711–729. doi: 10.1016/j.ympev.2003.09.014 CrossRefGoogle Scholar
  19. Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in poaceae. J Molec Evol 70:149–166. doi: 10.1007/s00239-009-9317-3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hachtel W, Neuss A, Vomstein J (1991) A chloroplast DNA inversion marks an evolutionary split in the genus Oenothera. Evolution 45:1050–1052. doi: 10.2307/2409709 CrossRefGoogle Scholar
  21. Hoot SB, Palmer JD (1994) Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Molec Evol 38:274–281CrossRefPubMedGoogle Scholar
  22. Hupfer H, Swiatek M, Hornung S, Herrmann RG, Maier RM, Chiu WL, Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Molec Gen Genet 263:581–585. doi: 10.1007/pl00008686 PubMedGoogle Scholar
  23. Hwang SM, Grimes J (1996) Styracaceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 15., vol 15Science Press, Beijing, pp 253–271Google Scholar
  24. Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Molec Phylogen Evol 48:1204–1217. doi: 10.1016/j.ympev.2008.06.013 CrossRefGoogle Scholar
  25. Johansson JT (1999) There large inversions in the chloroplast genomes and one loss of the chloroplast gene rps16 suggest an early evolutionary split in the genus Adonis (Ranunculaceae). Pl Syst Evol 218:133–143. doi: 10.1007/bf01087041 CrossRefGoogle Scholar
  26. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molec Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi: 10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Knox EB, Downie SR, Palmer JD (1993) Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Molec Biol Evol 10:414–430Google Scholar
  29. Ku C, Hu JM, Kuo CH (2013) Complete plastid genome sequence of the basal asterid Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. PLoS ONE 8:e62548. doi: 10.1371/journal.pone.0062548 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi: 10.1186/gb-2004-5-2-r12 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Molec Biol Evol 24:1161–1180. doi: 10.1093/molbev/msm036 CrossRefPubMedGoogle Scholar
  32. Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDraw (OGDraw): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274. doi: 10.1007/s00294-007-0161-y CrossRefPubMedGoogle Scholar
  33. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964. doi: 10.1093/nar/25.5.955 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Luo Y, Ma PF, Li HT, Yang JB, Wang H, Li DZ (2016) Plastid phylogenomic analyses resolve Tofieldiaceae as the root of the early diverging monocot order Alismatales. Genome Biol Evol 8:932–945. doi: 10.1093/gbe/evv260 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mabberley DJ (2008) Mabberley’s plant book: a portable dictionary of plants, their classifications, and uses, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  36. Maliga P, Svab Z (2011) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols, vol 701. Springer, New Jersey, pp 37–50. doi: 10.1007/978-1-61737-957-4_2 CrossRefGoogle Scholar
  37. Martinez-Alberola F, del Campo EM, Lazaro-Gimeno D, Mezquita-Claramonte S, Molins A, Mateu-Andres I, Pedrola-Monfort J, Casano LM, Barreno E (2013) Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts. PLoS ONE 8:e79685. doi: 10.1371/journal.pone.0079685 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J, Pasternak S, Olson A, Jiao Y, Lu Z, Bolser D, Kerhornou A, Staines D, Walts B, Wu G, D’Eustachio P, Haw R, Croft D, Kersey PJ, Stein L, Jaiswal P, Ware D (2014) Gramene 2013: comparative plant genomics resources. Nucl Acids Res 42:D1193–D1199. doi: 10.1093/nar/gkt1110 CrossRefPubMedGoogle Scholar
  39. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628. doi: 10.1073/pnas.0907801107 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Pl Biotechnol J 9:328–333. doi: 10.1111/j.1467-7652.2010.00558.x CrossRefGoogle Scholar
  41. Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ (2000) The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Molec Phylogen Evol 16:96–112. doi: 10.1006/mpev.1999.0769 CrossRefGoogle Scholar
  42. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. doi: 10.1371/journal.pone.0030619 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ravi V, Khurana JP, Tyagi AK, Khurana P (2007) An update on chloroplast genomes. Pl Syst Evol 271:101–122. doi: 10.1007/s00606-007-0608-0 CrossRefGoogle Scholar
  44. Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. doi: 10.1186/1471-2148-14-23 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ruhlman TA, Jansen RK (2014) The plastid genomes of flowering plants. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols, vol 1132. Springer, New York, pp 3–38. doi: 10.1007/978-1-62703-995-6_1 CrossRefGoogle Scholar
  46. Schönenberger J, Anderberg AA, Sytsma KJ (2005) Molecular phylogenetics and patterns of floral evolution in the Ericales. Int J Pl Sci 166:265–288CrossRefGoogle Scholar
  47. Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Amer J Bot 98:704–730CrossRefGoogle Scholar
  48. Son O, Park SJ (2016) Complete chloroplast genome sequence of Lysimachia coreana (Primulaceae). Mitochondrial DNA 27:2263–2265. doi: 10.3109/19401736.2014.984172 PubMedGoogle Scholar
  49. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stull GW, Duno de Stefano R, Soltis DE, Soltis PS (2015) Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Amer J Bot 102:1794–1813. doi: 10.3732/ajb.1500298 CrossRefGoogle Scholar
  51. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts. doi: 10.1111/j.0014-3820.2002.tb00191.x
  52. Szczecinska M, Gomolinska A, Szkudlarz P, Sawicki J (2014) Plastid and nuclear genomic resources of a relict and endangered plant species: chamaedaphne calyculata (L.) Moench (Ericaceae). Turkish J Bot 38:1229–1238. doi: 10.3906/bot-1405-80 CrossRefGoogle Scholar
  53. Thorne RF (2000) The classification and geography of the flowering plants: dicotyledons of the class angiospermae (subclasses magnoliidae, ranunculidae, caryophyllidae, dilleniidae, rosidae, asteridae, and lamiidae). Bot Rev 66:441–647. doi: 10.1007/bf02869011 CrossRefGoogle Scholar
  54. Walker JF, Zanis MJ, Emery NC (2014) Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Amer J Bot 101:722–729. doi: 10.3732/ajb.1400049 CrossRefGoogle Scholar
  55. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858. doi: 10.1073/pnas.0813376106 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Weng ML, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastid genome in geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molec Biol Evol 31:645–659. doi: 10.1093/molbev/mst257 CrossRefPubMedGoogle Scholar
  57. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Pl Molec Biol 76:273–297. doi: 10.1007/s11103-011-9762-4 CrossRefGoogle Scholar
  58. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. doi: 10.1093/bioinformatics/bth352 CrossRefPubMedGoogle Scholar
  59. Yang JB, Tang M, Li HT, Zhang ZR, Li DZ (2013) Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol Biol 13:84. doi: 10.1186/1471-2148-13-84 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yang JB, Li DZ, Li HT (2014) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Molec Ecol Resour 14:1024–1031. doi: 10.1111/1755-0998.12251 CrossRefGoogle Scholar
  61. Yao XH, Tang P, Li ZZ, Li DW, Liu YF, Huang HW (2015) The first complete chloroplast genome sequences in Actinidiaceae: genome structure and comparative analysis. PLoS ONE 10:e0129347. doi: 10.1371/journal.pone.0129347 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yukawa MT, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Molec Genet Genomics 275:367–373. doi: 10.1007/s00438-0050092-6 CrossRefGoogle Scholar
  63. Zhang L, Wu W, Yan HF, Ge XJ (2015) Phylotranscriptomic analysis based on coalescence was less influenced by the evolving rates and the number of genes: a case study in Ericales. Evol Bioinform 11:81–91. doi: 10.4137/EBO.S22448 Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Minghui Yan
    • 1
    • 2
  • Michael J. Moore
    • 3
  • Aiping Meng
    • 1
  • Xiaohong Yao
    • 1
  • Hengchang Wang
    • 1
  1. 1.Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of BiologyOberlin CollegeOberlinUSA

Personalised recommendations