Plant Systematics and Evolution

, Volume 302, Issue 6, pp 661–667 | Cite as

Phylogenetic relationships of New Zealand Lycopodiaceae

  • Delaney Burnard
  • Lara Shepherd
  • Leon Perrie
  • Andrew Munkacsi
Original Article


We examine the global relationships of all New Zealand’s Lycopodiaceae species through DNA sequencing of the chloroplast rbcL gene and phylogeny reconstruction. The molecular phylogeny largely agreed with recent taxonomic schemes based on morphology. However, the grouping of Lycopodiella serpentina with Lycopodiella caroliniana, as either Lycopodiella sect. Caroliniana or Pseudolycopodiella was not supported in the phylogeny, indicating that these classification schemes need adjustment. Several New Zealand species showed intraspecific genetic variation within New Zealand and/or compared to conspecific samples from overseas. The chloroplast sequences could not distinguish Lycopodiella diffusa and Lycopodiella lateralis, nor the different morphologies of Phlegmariurus varius characteristic of high and low altitudes.


Lycopodiaceae Lycopodiella Lycopodium Molecular phylogeny Phlegmariurus Pseudolycopodiella 



Delaney Burnard acknowledges support from the Te Papa M.Sc. Scholarship in molecular systematics and evolution, and Lara Shepherd was supported by a Royal Society of New Zealand Rutherford Discovery Fellowship. We thank the Department of Conservation, Wellington City Council and Greater Wellington Regional Council for granting permission to collect in reserve land. We thank Pat Brownsey, Peter Beveridge, Matt von Konrat and Louis Thouvenot for assistance with collecting and Pat Brownsey, Benjamin Øllgaard and an anonymous reviewer for comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2016_1290_MOESM1_ESM.pdf (117 kb)
Supplementary material 1 Localities, voucher and GenBank accession numbers for samples. (PDF 116 kb)
606_2016_1290_MOESM2_ESM.pdf (196 kb)
Supplementary material 2 Alignment of rbcL sequences. (PDF 195 kb)


  1. Aagaard SM, Greilhuber J, Zhang XC, Wikstrom N (2009) Occurrence and evolutionary origins of polyploids in the clubmoss genus Diphasiastrum (Lycopodiaceae). Molec Phylogenet Evol 52:746–754. doi: 10.1016/j.ympev.2009.05.004 CrossRefPubMedGoogle Scholar
  2. Allan HH (1961) Flora of New Zealand, vol 1. Government Printer, WellingtonGoogle Scholar
  3. Braekman JC, Nyembo L, Bourdoux P, Kahindo N, Hootle C (1974) Distribution des alcaloides dans le genre Lycopodium. Phytochemistry 13:2519–2528CrossRefGoogle Scholar
  4. Brownsey PJ, Smith-Dodsworth JC (2000) New Zealand ferns and allied plants, 2nd edn. David Bateman Ltd, AucklandGoogle Scholar
  5. Brownsey PJ, Given DR, Lovis JD (1985) A revised classification of New Zealand pteridophytes with a synonymic checklist of species. New Zealand J Bot 23:431–489CrossRefGoogle Scholar
  6. Bruce JG (1976) Development and distribution of mucilage canals in Lycopodium. Amer J Bot 63:481–491CrossRefGoogle Scholar
  7. Christenhusz MJM, Chase MW (2014) Trends and concepts in fern classification. Ann Bot (Oxford) 113:571–594. doi: 10.1093/aob/mct299 CrossRefGoogle Scholar
  8. Christenhusz MJM, Zhang X, Schneider H (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19:7–54CrossRefGoogle Scholar
  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772. doi: 10.1038/nmeth.2109 CrossRefGoogle Scholar
  10. Ebihara A, Nitta JH, Ito M (2010) Molecular species identification with rich floristic sampling: barcoding the pteridophyte flora of Japan. PLOS One 5:E15136CrossRefPubMedPubMedCentralGoogle Scholar
  11. Field AR, Bostock PD (2013) New and existing combinations in Palaeotropical Phlegmariurus (Lycopodiaceae) and lectotypification of the type species Phlegmariurus phlegmaris (L.) T. Sen and U. Sen. PhytoKeys 20:33–51. doi: 10.3897/phytokeys.20.4007 CrossRefPubMedGoogle Scholar
  12. Field AR, Testo W, Bostock PD, Holtum JAM, Waycott M (2016) Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Molec Phylogenet Evol 94:635–657. doi: 10.1016/j.ympev.2015.09.024 CrossRefPubMedGoogle Scholar
  13. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  14. Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K (1994) rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci USA 91:5730–5734CrossRefPubMedPubMedCentralGoogle Scholar
  15. Holloway JE (1919) Studies in the New Zealand species of the genus Lycopodium: part III—the plasticity of species. Trans & Proc Roy Soc New Zealand 51:161–216Google Scholar
  16. Holub J (1983) Validation of generic names in Lycopodiaceae: with a description of a new genus Pseudolycopodiella. Folia Geobot Phytotax 18:439–442CrossRefGoogle Scholar
  17. Holub J (1985) Transfers of Lycopodium species to Huperzia: with a note on generic classification in Huperziaceae. Folia Geobot Phytotaxon 20:67–80CrossRefGoogle Scholar
  18. Holub J (1991) Some taxonomic changes within Lycopodiales. Folia Geobot Phytotax 26:81–94CrossRefGoogle Scholar
  19. Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  20. Ji S-G, Huo K-K, Wang J, Pan S-L (2008) A molecular phylogenetic study of Huperziaceae based on chloroplast rbcL and psbA-trnH sequences. J Syst Evol 46:2130219. doi: 10.3724/SP.J.1002.2008.07036 Google Scholar
  21. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  23. Øllgaard B (1987) A revised classification of the Lycopodiaceae s. lat. Opera Bot 92:153–178Google Scholar
  24. Øllgaard B (2012) New combinations in neotropical Lycopodiaceae. Phytotaxa 57:10–22CrossRefGoogle Scholar
  25. Perrie LR, Ohlsen DJ, Shepherd LD, Garrett M, Brownsey PJ, Bayly MJ (2010) Tasmanian and Victorian populations of the fern Asplenium hookerianum result from independent dispersals from New Zealand. Austral Syst Bot 23:387–392CrossRefGoogle Scholar
  26. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetail and ferns are a monophyletic groups and the closest living relatives to seed plants. Nature 409:618–622CrossRefPubMedGoogle Scholar
  27. Pryer KM, Schneider H, Magallón S (2004) The radiation of ferns, horsetails and seed plants. In: Cracraft J, Donoghue M (eds) Assembling the tree of life. Oxford University Press, New York, pp 138–153Google Scholar
  28. Rambaut A, Drummond AJ (2009) Tracer, version 1.6. Available at: Accessed 5 Nov 2015
  29. Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050. doi: 10.2307/25065903 CrossRefGoogle Scholar
  30. Shepherd LD, McLay TGB (2011) Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. J Pl Res 124:311–314. doi: 10.1007/s10265-010-0379-5 CrossRefGoogle Scholar
  31. Shepherd LD, Perrie LR (2014) Genetic analyses of herbarium material: is more care required? Taxon 63:972–973. doi: 10.12705/635.2 CrossRefGoogle Scholar
  32. Shepherd LD, Perrie LR, Brownsey PJ (2007) Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum. Molec Ecol 16:4536–4549CrossRefGoogle Scholar
  33. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  34. Tryon RM, Tryon AF (1982) Ferns and allied plants with special reference to tropical America. Springer, New YorkCrossRefGoogle Scholar
  35. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wikström N, Kenrick P (1997) Phylogeny of Lycopodiaceae (Lycopsida) and the relationships of Phylloglossum drummondii Kunze based on rbcL sequences. Int J Pl Sci 158:862–871CrossRefGoogle Scholar
  37. Wikström N, Kenrick P (2000) Relationships of Lycopodium and Lycopodiella based on combined plastid rbcL gene and trnL intron sequence data. Syst Bot 25:495–510CrossRefGoogle Scholar
  38. Wikström N, Kenrick P (2001) Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Molec Phylogenet Evol 19:177–186CrossRefPubMedGoogle Scholar
  39. Yatsentyuk SP, Valiejo-Roman KM, Samigullin TH, Wilkstrom N, Troitsky AV (2001) Evolution of Lycopodiaceae inferred from spacer sequencing of chloroplast rRNA genes. Russ J Genet 37:1068–1073CrossRefGoogle Scholar
  40. Zhang LB, Iwatsuki K (2013) Lycopodiaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, Vols 2–3 (Pteridophytes). Science Press, Missouri Botanical Garden Press, Beijing, St Louis, pp 13–34Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Delaney Burnard
    • 1
  • Lara Shepherd
    • 1
    • 2
  • Leon Perrie
    • 2
  • Andrew Munkacsi
    • 1
  1. 1.School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Museum of New Zealand Te Papa TongarewaWellingtonNew Zealand

Personalised recommendations