Skip to main content

Advertisement

Log in

Biodiversity assessment using next-generation sequencing: comparison of phylogenetic and functional diversity between Nebraska grasslands

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Global biodiversity is declining rapidly as a consequence of anthropogenic changes to the environment. Traditional diversity indices such as species richness have been used to assess biodiversity, but recent arguments call for a more comprehensive assessment that includes both phylogenetic and functional diversity (PD and FD, respectively). Many PD metrics have been developed, but few empirical studies have compared metrics across sites with the goal of understanding their application to characterizing biodiversity. In this study, 17 PD metrics, four traditional diversity indices, and one measure of FD were calculated and compared between two Nebraska grasslands. PD metrics were calculated from robust phylogenies estimated from next-generation sequencing data of 45 species. Traditional indices were calculated using species abundance data, and FD was quantified by measuring the phylogenetic signal, K, of specific leaf area (SLA). Results showed that PD metrics and traditional indices were not always correlated, and various PD metrics characterized biodiversity differently. In addition, phylogenies estimated from >80 genes were more robust than single- or dual-gene phylogenies resulting in more reliable PD metrics. K of SLA indicated random trait assembly in all sites. Results suggested that metrics that identify phylogenetic structure and relatedness can provide information to conservation planners about the ability of a community to persist in an unpredictable future. A combination of these results with those of future investigations applying PD and FD metrics to varying communities will support concrete recommendations to conservation planners about how to incorporate these metrics into the selection of priority regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arroyo-Rodríguez V, Cavender-Bares J, Escobar F, Melo FPL, Tabarelli M, Santos BA (2012) Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. J Ecol 100:702–711

    Article  Google Scholar 

  • Aust SK, Ahrendsen DL, Kellar PR (2015) Biodiversity assessment among two Nebraska prairies: a comparison between traditional and phylogenetic diversity indices. Biodivers Data J 3:e540. doi:10.3897/BDJ.3.e5403

    Google Scholar 

  • Barker GM (2002) Phylogenetic diversity: a quantitative framework for measurement of priority and achievement in biodiversity conservation. Biol J Linn Soc 76:165–194

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucl Acids Res 33:D34–D38. doi:10.1093/nar/gki063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C, Game ET, Grantham H, Kark S, Linke S, McDonald-Madden E, Pressey RL, Walker S, Wilson KA, Possingham HP (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23:649–654

    Article  PubMed  Google Scholar 

  • Brown RL, Jacobs LA, Peet RK (2007) Species Richness: Small Scale. eLS John Wiley & Sons Ltd, Chichester. Available at: http://www.els.net (doi:10.1002/9780470015902.a0020488)

  • Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cadotte MW, Davis TJ, Regetz J, Kembel SW, Cleland E, Oakley TH (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance, and evolutionary history. Ecol Lett 13:96–105

    Article  PubMed  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93:S223–S233. doi:10.1890/11-0426.1

    Article  Google Scholar 

  • Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary differences. Ecol Lett 16(10):1234–1244. doi:10.1111/ele.12161

    Article  PubMed  Google Scholar 

  • Calba S, Maris V, Devictor V (2014) Measuring and explaining large-scale distribution of functional and phylogenetic diversity in birds: separating ecological divers from methodological choices. Global Ecol Biogeogr 23(6):669–678. doi:10.1111/geb.12148

    Article  Google Scholar 

  • Carboni M, Acosta ATR, Ricotta C (2013) Are differences in functional diversity among plant communities on Mediterranean coastal dunes driven by their phylogenetic history? J Veg Sci 24:932–941

    Article  Google Scholar 

  • Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Amer Naturalist 163:823–843

    Article  CAS  Google Scholar 

  • Chiarucci A, Bacaro G, Scheiner SM (2011) Old and new challenges in using species diversity for assessing biodiversity. Philos Trans Ser B 366:2426–2437

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. Available at: http://purl.oclc.org/estimates

  • Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1040

    PubMed  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dinnage R, Cadotte MW, Haddad NM, Crutsinger GM, Tilman D (2012) Diversity of plant evolutionary lineages promotes arthropod diversity. Ecol Lett 15:1308–1317

    Article  PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conservation 61:1–10

    Article  Google Scholar 

  • Fay MF (2013) Rosids. Bot J Linn Soc 172:399–403

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem–function relationships. Ecology 92:1573–1581

    Article  PubMed  Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Blamford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hot spots. Nature 445:757–760

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Zhu YP, Wu BC, Zhao YM, Chen JQ, Hang YY (2008) Phylogeny of Dioscorea sect. Stenophora based on chloroplast matK, rbcL, and trnLF sequences. J Syst Evol 46:315–321

    Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695

    Article  Google Scholar 

  • Girish V, Vijayalakshmi A (2004) Affordable image analysis using NIH Image/Image. Indian J Cancer 41:47

    PubMed  CAS  Google Scholar 

  • Gotelli NJ, Chao A (2013) Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In: Levin SA (ed) Encyclopedia of Biodiversity. Academic Press, Waltham, pp 195–211

    Chapter  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hadly EA, Spaeth PA, Li C (2009) Niche conservatism above the species level. Proc Natl Acad Sci USA 106:19707–19714

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy OJ, Senterre B (2007) Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. J Ecol 95:493–506

    Article  Google Scholar 

  • Harrison PA, Berry PM, Simpson G, Haslett JR, Blicharska M, Bucur M, Dunford R, Egoh B, Garcia-Llorente M, Geamănă N, Geertsema W, Lommelen E, Meiresonne L, Turkelboom F (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosys Serv 9:191–203

    Article  Google Scholar 

  • Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Amer Naturalist 169:E68–E83

    Article  Google Scholar 

  • Hoffmann S, Hoffmann A (2007) True diversities: A comment on Lou Jost’s “Entropy and diversity”. Available at: http://www.ovgu.de/vwl3/02_people/03_research/documents/Paper-Truediversities.pdf

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Jaccard P (1912) The distribution of the flora of the alpine zone. New Phytol 11:37–50

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Kareiva P, Marvier M (2011) Conservation Science: Balancing the Needs of People and Nature, 2nd edn. Roberts and Company Publishers Inc, Colorado

    Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellar PR, Ahrendsen DL, Aust SK, Jones AR, Pires JC (2015) Biodiversity comparison among phylogenetic diversity metrics and between three North American prairies. Appl Pl Sci 3:1400108. doi:10.3732/apps.1400108

    Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  PubMed  CAS  Google Scholar 

  • Kembel SW, Ackerly DD, Blomberg SP, Cornwell WK, Cowan PD, Helmus MR, Morlon H, Webb CO (2014) Package ‘picante’. Available at: http://cran.r-project.org/web/packages/picante/picante.pdf

  • Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Amer Statist Assoc 47:583–621

    Article  Google Scholar 

  • Leinster T, Cobbold CA (2012) Measuring diversity: the importance of species similarity. Ecology 93:477–489

    Article  PubMed  Google Scholar 

  • Lusk CH, Wright I, Reich PB (2003) Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytol 160:329–336

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18:50–60

    Article  Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756

    Article  Google Scholar 

  • Niobrara Fact Sheet, un-authored, (2005) The Nature Conservancy in Nebraska-Niobrara Valley Preserve. Conservancy, Omaha. Available at: http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/nebraska/placesweprotect/tnc-niobrara-fact-sheet4-281.pdf

  • Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625

    Article  Google Scholar 

  • Pavoine S, Ricotta C (2012) Testing for phylogenetic signal in biological traits: the ubiquity of cross-product statistics. Evolution 67:828–840

    Article  PubMed  Google Scholar 

  • Peterson PM, Romaschenko K, Johnson G (2010) A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Molec Phylogen Evol 55:580–598

    Article  CAS  Google Scholar 

  • Pio DV, Broennimann O, Barraclough TG, Reeves G, Rebelo AG, Thuiller W, Guisan A, Salamin N (2011) Spatial predictions of phylogenetic diversity in conservation decision making. Conserv Biol 25:1229–1239

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, van Groenendael JM (2008) Less lineages–more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: www.R-project.org

  • Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2014) An introduction to ecology and the biosphere. In: Wilbur B (ed) Campbell biology. Pearson Education Inc, Boston, pp 1164–1165

    Google Scholar 

  • Rodrigues ASL, Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol Conservation 105:103–111

    Article  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield NJ, Dirzo R, Huber-Sannwald E, Huenneke LF, Jackson R, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Salzburger W, Mack T, Verheyen E, Meyer A (2005) Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Samson FB, Knopf FL (1994) Prairie conservation in North America. Bioscience 44:418–421

    Article  Google Scholar 

  • Schwab A, Dubois D, Fried PM, Edwards PJ (2002) Estimating the biodiversity of hay meadows in north-eastern Switzerland on the basis of vegetation structure. Agric Ecosyst Environ 93:197–209

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skr 5:1–34

    Google Scholar 

  • Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648

    Article  PubMed  Google Scholar 

  • Steele PR, Pires JC (2011) Biodiversity assessment: state-of-the-art techniques in phylogenomics and species identification. Amer J Bot 98:415–425

    Article  Google Scholar 

  • Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Amer J Bot 99:349–364

    Article  CAS  Google Scholar 

  • Swenson N (2011) The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Amer J Bot 98:472–480

    Article  Google Scholar 

  • Swenson NG, Erickson DL, Mi X, Bourg NA, Forero-Montaña J, Ge X, Howe R, Lake JK, Lie X, Ma K, Pei N, Thompson J, Uriarte M, Wolf A, Wright SJ, Ye W, Zhang J, Zimmerman JK, Kress WJ (2012) Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology 93:S112–S125

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer, Sunderland

  • Thompson GG, Withers PC (2003) Effect of species richness and relative abundance on the shape of the species accumulation curve. Austral Ecol 28:355–360

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tucker CM, Cadotte MW (2013) Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity Distrib 19:845–854

    Article  Google Scholar 

  • Turner CL, Knapp AK (1996) Responses of a C4 grass and three C3 forbs to variation in nitrogen and light in tallgrass prairie. Ecology 77:1738–1749

    Article  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—Systematics and the agony of choice. Biol Conservation 55:235–254

    Article  Google Scholar 

  • Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ (2011) Measuring Phylogenetic Biodiversity. In: Magurran AE, McGill BJ (eds) Biological Diversity: frontiers in measurement and assessment. Oxford University Press Inc, New York, pp 194–207

    Google Scholar 

  • Wacker L, Baudois O, Eichenberger-Glinz S, Schmid B (2009) Diversity effects in early- and mid-successional species pools along a nitrogen gradient. Ecology 90:637–648

    Article  PubMed  Google Scholar 

  • Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Progr Ser 129:301–305

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Amer Naturalist 156:145–155

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Ackeerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 18:2098–2100

    Article  CAS  Google Scholar 

  • Williams J, Diebel P (1996) The Economic Value of Prairie. In: Samson FB, Knopf FL (eds) Prairie conservation: preserving North America’s most endangered ecosystem. Island Press, Covelo, pp 19–35

    Google Scholar 

  • Wilson CA (2009) Phylogenetic relationships among the recognized series in Iris section Limniris. Syst Bot 34:277–284

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. PhD Thesis, University of Texas, Austin

Download references

Acknowledgments

The authors thank anonymous reviewers and M.W. Cadotte (UT-Scarborough) for many helpful suggestions, C. Kellar and D. Sutherland (UNO) for field and identification assistance, and A. Swift (UNO) for guidance with statistical analyses. We also thank the MU Core Sequencing facility, the UNMC DNA Sequencing Core, the managing institutions (The Nature Conservancy and University of Nebraska Foundation) for access to the two grassland sites, and the following granting institutions: National Science Foundation (NSF) Nebraska Experimental Program to Stimulate Competitive Research (EPSCoR) First Award (Prime Award: EPS1004094; Subaward: 95-3101-0040-217) and the NASA Nebraska Space Grant. DLA also thanks the following for conference travel and research grants: Sigma Xi, UNO-Graduate Research and Creative Activity (GRACA), American Society of Plant Taxonomists (ASPT), Missouri Botanical Garden (MOBOT) Delzie Demaree Travel Award, and the UNO Biology Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roxanne Kellar.

Ethics declarations

Funding

This study was funded by NSF Nebraska EPSCoR First Award (Prime Award: EPS1004094; Subaward: 95-3101-0040-217) and the NASA Nebraska Space Grant (no number).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Eric Schranz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 109 kb)

Supplementary material 2 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahrendsen, D.L., Aust, S.K. & Roxanne Kellar, P. Biodiversity assessment using next-generation sequencing: comparison of phylogenetic and functional diversity between Nebraska grasslands. Plant Syst Evol 302, 89–108 (2016). https://doi.org/10.1007/s00606-015-1246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1246-6

Keywords

Navigation