Plant Systematics and Evolution

, Volume 302, Issue 1, pp 129–135 | Cite as

Phylogeny of Sparganium (Typhaceae) revisited: non-monophyletic nature of S. emersum sensu lato and resurrection of S. acaule

  • Yu ItoEmail author
  • Norio Tanaka
  • Changkyun Kim
  • Robert B. Kaul
  • Dirk C. Albach
Short Communication


The diploid aquatic genus Sparganium (Typhaceae) comprises ca. 14 species mainly in cool temperate regions of the world. Among these, S. emersum comprises two infraspecific taxa, subspecies acaule from eastern North America and subspecies emersum from Eurasia and western North America (and occasionally from eastern North America as well). However, there has been some discussion regarding the monophyly of S. emersum sensu lato. We tested the hypothesis of a polyphyletic S. emersum sensu lato in a phylogenetic framework. Sequence data from six plastid DNA regions and nuclear phyC were analyzed using maximum parsimony, maximum likelihood, and Bayesian inference. We obtained a moderately resolved phylogeny with the plastid DNA data set, while phylogenetically less-informative phyC was useful to distinguish morphological species and discern hybrid and non-hybrid specimens. Sparganium emersum sensu lato was resolved as polyphyletic, clustering with S. angustifolium and S. glomeratum, respectively. Sparganium acaule is resurrected to be a sister to S. glomeratum, for which synapomorphic and distinguishing morphological characters are provided. Three cases of hybridization were detected.


Aquatic plants Hybridization Molecular phylogeny phyC Plastid DNA Sparganium Typhaceae 



The authors thank curators of the following herbaria for arranging loans from their institutions and/or for hospitality during our recent visits: J. Hall (ALTA), P. Catling (DAO), D. Boufford (GH), L. Lisitsyna (IBIW), A. Seregin (MW), B. Thiers, T. Zanoni (NY), and T. Dickinson (TRT); D. D. Sokoloff (Moscow), K. Shuto (FKSE), and K. Sawa (Yamagata) for providing Sparganium specimens; C. Ishii (Tsukuba) for help with DNA sequencing; and M. Sasagawa (Niigata) for help to collect samples. We would also like to thank H. Cota-Sanchez (SASK), J. Li (Kunming), J. Murata, H. Ikeda, and T. Ohi-Toma (TI) for their continuous encouragements and supports. This research was partly supported by Yamada Science Foundation Long-term Stay Abroad Program, Japan to YI, and JSPS KAKENHI Grant Number 25440224 to NT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable for this study.

Informed consent

Not applicable for this study.

Supplementary material

606_2015_1245_MOESM1_ESM.docx (51 kb)
Supplementary material 1 (DOCX 50 kb)


  1. Brayshaw TC (1985) Pondweeds and bur-reeds, and their relatives, of British Columbia. Occas Pap British Columbia Prov Mus Ser 26Google Scholar
  2. Clarke LA, Rebelo CS, Gonçalves J, Boavida MG, Jordan P (2001) PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Molec Pathol 54:351–353CrossRefGoogle Scholar
  3. Cook CDK (1980) Sparganium. Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 274–275Google Scholar
  4. Cook CDK, Nicholls MS (1986) A monographic study of the genus Sparganium (Sparganiaceae). Part 1. Subgenus Xanthosparganium Holmberg. Bot Helv 96:213–267Google Scholar
  5. Cook CDK, Nicholls MS (1987) A monographic study of the genus Sparganium (Sparganiaceae): part 2. Subgenus Sparganium. Bot Helv 97:1–44Google Scholar
  6. Fay MF, Swensen SM, Chase MW (1997) Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bull 52:111–120CrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. Ito Y, Ohi-Toma T, Murata J, Tanaka N (2010) Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. Amer J Bot 97:1156–1167. doi: 10.3732/ajb.0900168 Google Scholar
  9. Kaul RB (1997) Sparganiaceae. In: Flora of North America Editorial Committee (ed) 1993+. Flora of North America North of Mexico, vol 22. Oxford University Press, New York, pp 270–277Google Scholar
  10. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498CrossRefGoogle Scholar
  11. Kim C, Choi H-K (2011) Molecular systematics and character evolution of Typha (Typhaceae) inferred from nuclear and plastid DNA sequence data. Taxon 60:1417–1428Google Scholar
  12. Larson GE (1993) Aquatic and wetland vascular plants of the northern Great Plains, General Technical Report RM-238. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort CollinsGoogle Scholar
  13. Little DP, Barrington DS (2003) Major evolutionary events in the origin and diversification of the fern genus Polystichum (Dryopteridaceae). Amer J Bot 90:508–514. doi: 10.3732/ajb.90.3.508 CrossRefGoogle Scholar
  14. Morong T (1888) Studies in the Typhaceae. II. Sparganium. Bull Torrey Bot Club 15:73–81CrossRefGoogle Scholar
  15. Nylander JAA (2002) MrModeltest. Ver 1.0. Program distributed by the author. Department of Systematic Zoology, Uppsala University, Uppsala. Available at:
  16. Preston CD, Croft JM (1997) Aquatic plants in Britain and Ireland. Harley Books, ColchesterGoogle Scholar
  17. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer. Ver 1.6. Available at:
  18. Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus: evidence from ribosomal genes. Amer J Bot 78:1218–1237CrossRefGoogle Scholar
  19. Rieseberg LH (1997) Hybrid origin of plant species. Annu Rev Ecol Syst 28:359–389. doi: 10.1146/annurev.ecolsys.28.1.359 CrossRefGoogle Scholar
  20. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  22. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 PubMedCrossRefGoogle Scholar
  23. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. doi: 10.1080/10635150802429642 PubMedCrossRefGoogle Scholar
  24. Sulman JD, Drew BT, Drummond C, Hayasaka E, Systma KJ (2013) Systematics, biogeography, and character evolution of Sparganium (Typhaceae): diversification of a widespread aquatic lineage. Amer J Bot 100:2023–2039. doi: 10.3732/ajb.1300048 CrossRefGoogle Scholar
  25. Swofford DL (2002) PAUP: phylogenetic analysis using parsimony (and other methods). Ver 4.0b10. Sinauer Associates, Sunderland, USAGoogle Scholar
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882CrossRefGoogle Scholar
  27. Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis P, Soltis D, Doyle JJ (eds) Molecular systematics of plants II. Kluwer, Dordrecht, pp 265–296CrossRefGoogle Scholar
  28. Wendel JF, Stewart JM, Rettig J (1991) Molecular evidence for homoploid reticulate evolution among Australian species of Gossypium. Evolution 45:694–711CrossRefGoogle Scholar
  29. Whitten WM, Williams NH, Chase MW (2000) Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Amer J Bot 87:1842–1856CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yu Ito
    • 1
    • 2
    Email author
  • Norio Tanaka
    • 3
  • Changkyun Kim
    • 4
  • Robert B. Kaul
    • 5
  • Dirk C. Albach
    • 6
  1. 1.Botanical Gardens, Graduate School of ScienceThe University of TokyoTokyoJapan
  2. 2.Xishuangbanna Tropical Botanical GardenThe Chinese Academy of SciencesKunmingPeople’s Republic of China
  3. 3.Tsukuba Botanical GardenNational Museum of Nature and ScienceTsukubaJapan
  4. 4.Department of Life ScienceGachon UniversitySeongnamRepublic of Korea
  5. 5.The Bessey HerbariumUniversity of NebraskaLincolnUSA
  6. 6.Institute of Biology and Environmental Sciences (IBU)Carl von Ossietzky-Universität OldenburgOldenburgGermany

Personalised recommendations