Plant Systematics and Evolution

, Volume 302, Issue 1, pp 11–21 | Cite as

Phylogenetic analyses of Spiraea (Rosaceae) distributed in the Qinghai-Tibetan Plateau and adjacent regions: insights from molecular data

  • Gulzar KhanEmail author
  • Fa-Qi ZhangEmail author
  • Qing-Bo Gao
  • Peng-Cheng Fu
  • Rui Xing
  • Jiu-Li Wang
  • Hai-Rui Liu
  • Shi-Long ChenEmail author
Original Article


The Qinghai-Tibetan Plateau (QTP) and adjacent regions comprise an excellent mountainous system to study plant diversification and speciation within East Asia. The uplift and eco-environmental processes of QTP have had an obvious effect on evolution of organisms in this region. The present study intends to test the potential correlation between evolutionary events (such as speciation and diversification) and orogenetic events (such as the intense uplift of QTP). Sequence data from five plastid DNA regions (trnLtrnF, rpl20rpl12, rps15ycf1, psbAtrnH, and trnStrnG) and one nuclear ribosomal internal transcribed spacer of 19 species of the genus Spiraea L. were used in the study. Maximum parsimony and maximum likelihood trees were constructed in PAUP*, while divergence time was estimated with BEAST v1.7.5. Phylogenetic reconstruction revealed that these species form a single clade and can be divided into three sections. Diversification of Spiraea species began in middle Miocene (ca. 13.38 million years ago) during the first stage of uplifting at QTP. Diversification of Spiraea was further triggered and accelerated during the second stage of QTP uplifting in late Pliocene (ca. Last four million years). The estimated divergences time indicate that this rapid diversification was most likely triggered by the uplifting of QTP in early Pliocene, and accelerated during the Quaternary climatic oscillations.


Climatic oscillations Phylogenetics Qinghai-Tibetan Plateau Speciation Spiraea



This work was financially supported by the National Natural Science Foundation of China (Grants Nos. 31270270, 31200281, and 31110103911); the Chinese Academy of Sciences Fellowship for Young International Scientists (No. 2013Y2SB0005); West Light Foundation of the Chinese Academy of Sciences; the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. KSCX2-EW-Z-1); and the international scientific and technological cooperation projects of Qinghai Province (No. 2014-HZ-812).

Supplementary material

606_2015_1238_MOESM1_ESM.pdf (151 kb)
Supplementary material 1 (PDF 151 kb)
606_2015_1238_MOESM2_ESM.pdf (97 kb)
Supplementary material 2 (PDF 97 kb)
606_2015_1238_MOESM3_ESM.pdf (298 kb)
Supplementary material 3 (PDF 297 kb)


  1. Abbott RJ, Brochmann C (2003) History and evolution of the arctic flora: in the footsteps of Eric Hultén. Molec Ecol 12:299–313CrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Cont 19:716–723CrossRefGoogle Scholar
  3. Chase MW, Fay M, Devey DS, Maurin O, Rønsted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75Google Scholar
  4. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cheng HB, Powell C, An ZS, Zhou J, Dong GR (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28:715–718CrossRefGoogle Scholar
  6. Donoghue MJ, Smith SA (2004) Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos T Roy Soc B 359:1633–1644CrossRefGoogle Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bulletin, Bot Soc Amer 19:11–15Google Scholar
  8. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedPubMedCentralCrossRefGoogle Scholar
  9. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7.5. Molec Biol Evol 29:1969–1973PubMedPubMedCentralCrossRefGoogle Scholar
  10. Evans RC, Dickinson TA (1999) Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int J Pl Sci 160:981–1012CrossRefGoogle Scholar
  11. Gao QB, Duan YZ, Zhang FQ, Li YH, Fu PC, Chen SL (2012) Intraspecific divergences of Rhodiola alsia (Crassulaceae) based on plastid DNA and internal transcribed spacer fragments. Bot J Linn Soc 168:204–215CrossRefGoogle Scholar
  12. Hamilton M (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec Ecol 8:521–523Google Scholar
  13. Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670PubMedCrossRefGoogle Scholar
  14. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  15. Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195 discussion 195 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hutchinson J (1964) The genera of flowering plants. Dicotylédones, Vol. 1. II, 12th ed. Gebru¨ der Borntraeger, Berlin, pp 209–218Google Scholar
  17. Kaellersjoe M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg O, Bremer K (1998) Simultaneous parsimony jackknife analysis of 2538rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Pl Syst Evol 213:259–287CrossRefGoogle Scholar
  18. Kårehed J, Groeninckx I, Dessein S, Motley TJ, Bremer B (2008) The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of the Rubiaceae tribe Spermacoceae. Molec Phylogen Evol 49:843–866CrossRefGoogle Scholar
  19. Klootwijk C, Conaghan P, Powell CM (1985) The Himalayan arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet Sci Lett 75:167–183CrossRefGoogle Scholar
  20. Kranz HD, Mikš D, Siegler ML, Capesius I, Sensen CW, Huss VA (1995) The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J Molec Evol 41:74–84PubMedCrossRefGoogle Scholar
  21. Li JJ, Fang XM (1998) Research on the uplift of the Qinghai-Xizang Plateau and environmental changes. China Sci Bull 43:1569–1574Google Scholar
  22. Li JJ, Wen SW, Zhang QS, Wang FB, Zheng BX, Li BY (1979) A discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau. Sci Sin 22:1314–1328Google Scholar
  23. Li JJ, Shi YF, Li BY (1995) Uplift of the Qinghai-Xizang (Tibet) plateau and global change. Lanzhou Univ Press, LanzhouGoogle Scholar
  24. Liu JQ, Gao TG, Chen ZD, Lu AM (2002) Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Molec Phylogen Evol 23:307–325CrossRefGoogle Scholar
  25. Liu JQ, Wang YJ, Wang AL, Hideaki O, Abbott RJ (2006) Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Molec Phylogen Evol 38:31–49CrossRefGoogle Scholar
  26. Liu JQ, Sun YS, Ge XJ, Gao LM, Qiu YX (2012) Phylogeographic studies of plants in China: advances in the past and directions in the future. J Syst Evol 50:267–275CrossRefGoogle Scholar
  27. Liu JQ, Duan WY, Hao G, Ge XJ, Sun H (2014) Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J Syst Evol 52(3):241–249CrossRefGoogle Scholar
  28. Mes THM, Brederode VJ, Hart H (1996) Origin of the woody Macaronesian Sempervivoideae and the phylogenetic position of the east African species of Aeonium. Bot Act 109:477–491CrossRefGoogle Scholar
  29. Morgan DR, Soltis DE, Robertson KR (1994) Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer J Bot 81:890–903CrossRefGoogle Scholar
  30. Muellner A, Schaefer H, Lahaye R (2011) Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae). Molec Ecol Res 11:450–460CrossRefGoogle Scholar
  31. Myers N, Mittermeier RA, Mittermeier CG, Fonseca DGA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  32. Patriat P, Achache J (1984) India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621CrossRefGoogle Scholar
  33. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  34. Potter D, Gao F, Esteban PB, Oh SH, Baggett S (2002) Phylogenetic relationship in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Pl Syst Evol 231:77–89CrossRefGoogle Scholar
  35. Potter D, Still SM, Grebenc T, Ballian D, Božič G, Franjiæ J, Kraigher H (2007) Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Pl Syst Evol 266:105–118CrossRefGoogle Scholar
  36. Qiu YL, Palmer JD (1999) Phylogeny of early land plants: insights from genes and genomes. Trends Pl Sci 4:26–30CrossRefGoogle Scholar
  37. Rehder A (1940) Manual of cultivated trees and shrubs. Dioscorides Press, PortlandGoogle Scholar
  38. Scarcelli N, Barnaud A, Eiserhardt W, Treier UT, Seveno M, d’Anfray A, Vigouroux Y, Pintaud JC (2011) A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotyledons. PLoS ONE 6:e19954PubMedPubMedCentralCrossRefGoogle Scholar
  39. Schultz J, Wolf M (2009) ITS2 sequence–structure analysis in phylogenetics: a how-to manual for molecular systematics. Molec Phylogen Evol 52:520–523CrossRefGoogle Scholar
  40. Schultz J, Maisel S, Gerlach D, Müller T, Wolf M (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–364PubMedPubMedCentralCrossRefGoogle Scholar
  41. Schulze-Menz GK (1964) Rosaceae. In: Melchior H (ed) Engler’s Syllabus der Pflanzenfamilien II, Gebrüder Borntraeger, Berlin, pp 209–218Google Scholar
  42. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92:142–166CrossRefGoogle Scholar
  43. Shi Y (2002) Characteristics of late quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary Int 97:79–91CrossRefGoogle Scholar
  44. Shi YF, Tang MC, Ma YZ (1998) The relation of second rising in Qinghai-Xizang Plateau and Asia Monsoon. Sci Chi D 28:263–271Google Scholar
  45. Simmons MP (2004) Independence of alignment and tree search. Molec Phylogen Evol 31:874–879CrossRefGoogle Scholar
  46. Spicer RA, Harris NB, Widdowson WM, Herman AB, Guo S, Valdes PJ, Wolfe JA, Kelley SP (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624PubMedCrossRefGoogle Scholar
  47. Swofford DL (2007) PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  48. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109CrossRefGoogle Scholar
  49. Takhtadzhian AL (1997) Diversity and classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  50. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tao JR, Xiong XZ (1986) The latest Cretaceous flora of Heilongjiang Province and the floristic relationship between East Asia and North America. Acta Phytotaxon Sin 24:1–15Google Scholar
  52. Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS (2001) Geology—oblique stepwise rise and growth of the Tibet plateau. Science 294:1671–1677PubMedCrossRefGoogle Scholar
  53. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737Google Scholar
  54. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394–1397PubMedCrossRefGoogle Scholar
  56. Wang A, Yang M, Liu J (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann Bot (Oxford) 96:489–498CrossRefGoogle Scholar
  57. Wang L, Abbott RJ, Zheng W, Chen P, Wang Y, Liu J (2009a) History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: aconitum gymnandrum (Ranunculaceae). Molec Ecol 18:709–721CrossRefGoogle Scholar
  58. Wang L, Ikeda Liu TL, Wang YJ, Liu JQ (2009b) Repeated range expansion and glacial endurance of Potentilla glabra (Rosaceae) in the Qinghai-Tibetan plateau. J Integr Pl Biol 51:698–706CrossRefGoogle Scholar
  59. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols. Academic Press, San Diego, pp 315–322Google Scholar
  60. Wu ZY (ed) (1980) Vegetation of China. Academic Press, BeijingGoogle Scholar
  61. Xu T, Abbott RJ, Milne RI, Mao K, Du FK, Wu G, Ciren Z, Miehe G, Liu J (2010) Phylogeography and allopatric divergence of Cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evol Biol 10:194PubMedPubMedCentralCrossRefGoogle Scholar
  62. Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the quaternary climate change. Molec Ecol 17:5135–5145CrossRefGoogle Scholar
  63. Zhang D, Fengquan L, Jianmin B (2000) Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the quaternary in China. Environm Geol 39:1352–1358CrossRefGoogle Scholar
  64. Zhang ML, Kang Y, Zhong Y, Sanderson SC (2012) Intense uplift of the Qinghai-Tibetan Plateau triggered rapid diversification of Phyllolobium (Leguminosae) in the Late Cenozoic. Pl Ecol Divers 5:491–499CrossRefGoogle Scholar
  65. Zheng BX, Xu QQ, Shen YP (2002) The relationship between climate change and quaternary glacial cycles on thee Qinghai-Tibetan Plateau: review and speculation. Quaternary Int 97–98:93–101CrossRefGoogle Scholar
  66. Zhisheng A, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningPeople’s Republic of China
  2. 2.School of Life SciencesSouthwest UniversityChongqingChina
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Luoyang Normal UniversityLuoyangPeople’s Republic of China

Personalised recommendations