Plant Systematics and Evolution

, Volume 301, Issue 10, pp 2419–2439 | Cite as

Molecular and morphological perspectives on the circumscription of Carex section Heleoglochin (Cyperaceae)

  • A. Molina
  • K-S. Chung
  • A. L. Hipp
Original Article


Vignea is the only monophyletic subgenus in the genus Carex (Cyperaceae), comprising nearly 300 members grouped into 19–28 sections. Molecular studies have demonstrated that most of these sections are polyphyletic. Here, we seek to clarify the relationships among species in section Heleoglochin based on phylogenetic and morphological analyses. We analyzed sequence data using nuclear ribosomal DNA internal and external transcriber spacer regions of 60 representative specimens of sect. Heleoglochin, representing the full geographic range of the section and of species that are themselves geographically widespread. We used maximum likelihood and Bayesian inference to estimate phylogeny and divergence times based on molecular data. We scored 17 vegetative and inflorescence characters on 303 specimens and 23 perigynium characters on 56 specimens to characterize morphological variation within and among species and clades. We undertook a comparative analysis of morphological, molecular, and biogeographic patterns to evaluate sectional limits and relationships. Our findings confirm that section Heleoglochin is polyphyletic, with three main lineages—Eurasiatic, North American, and Oceanic clades—supported by molecular, morphological, and biogeographic data. Morphological and molecular analyses support two disjunctures: the European species Carex appropinquata appears sister to the Oceanic lineage, and all the specimens of C. diandra distributed worldwide are grouped together in the North American clade. Concordance among morphological, molecular, and biogeographic data supports each of the lineages and highlights the potential of integrative studies to illuminate the causes of mismatches between phylogeny and traditional classifications. Such integrative studies are needed to make headway on the systematics of this thorny genus, in which non-monophyly of traditional sections is the rule rather than the exception.


Carex diandra Infrageneric classification Morphology Nuclear ribosomal DNA Phylogeny Carex subgenus Vignea 



The authors thank A. Srivastava, M. Hahn, B. Brown, and staff of the Pritzker Laboratory at the Field Museum for sequencing support; and staff at B, BCN, C, CANB, CANU, CHR, COI, FR, H, JACA, JBAG, K, LE, LEB, LY, MA, MEL, MICH, OKAY, SANT, and TFC for assistance with loans and images. C. Acedo helped by asking for accessions to the molecular study and P.L. de Lange provided specimens from Australia. AH and KSC were supported by grants from the US National Science Foundation (NSF DEB Awards 0743157 and 1255901 to AH).

Supplementary material

606_2015_1237_MOESM1_ESM.pdf (133 kb)
Supplementary material 1 (PDF 133 kb)
606_2015_1237_MOESM2_ESM.pdf (990 kb)
Supplementary material 2 (PDF 990 kb)


  1. Axelrod DI (1985) Rise of the grassland biome, central North America. Bot Rev 51:163–201CrossRefGoogle Scholar
  2. Ball PW, Reznicek AA (2000) Carex L. In: Editorial Committee (eds) Flora of North America, North of Mexico, vol. 23. Oxford University Press, New York, pp 254–572. Available at:
  3. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geothermal Res 94:1–19CrossRefGoogle Scholar
  4. Carracedo JC, Pérez FJ, Ancochea E, Meco J, Hernán F, Cubas CR, Casillas R, Rodríguez E, Ahijado A (2002) Cenozoic volcanism II: the Canarian Islands. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society of London, London, pp 439–472Google Scholar
  5. Chater AO (1980) Carex L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Waters SM, Webb DA (eds) Flora Europaea, vol 5., Cambridge University Press, Cambridge, UK, pp 290–323Google Scholar
  6. Cochrane TS (2002) Carex L. sect. Heleoglochin Dumortier. In: Committee Editorial (ed) Flora of North America, North of Mexico, vol 23. Oxford University Press, New York, pp 278–281Google Scholar
  7. Crips MD, Cook LG (2007) A congruent molecular signature of vicariance across multiple plant lineages. Molec Phylogen Evol 43:1106–1117. doi: 10.1016/j.ympev.2007.02.030 CrossRefGoogle Scholar
  8. Cunningham GM, Mulham WE, Milthorpe PL, Leigh JH (1992) Plants of Western New South Wales. CSIRO, Victoria, pp 155–156Google Scholar
  9. Dai LK, Liang SY, Zhang SR, Tang YC, Koyama T, Tucker GC (2010) Carex L. In: Wu CY, Raven PH, Hong DY (eds) Flora of China, vol 23, Science Press and Missouri Botanical Garden Press, Beijing, pp 285–461. Available at:
  10. Derieg NJ, Sangaumphai A, Bruederle P (2008) Genetic diversity and endemism in North American Carex section Ceratocystis (Cyperaceae). Amer J Bot 95:1287–1296. doi: 10.3732/ajb.2007069 CrossRefGoogle Scholar
  11. Dragon JA, Barrington DS (2009) Systematics of the Carex aquatilis and C. lenticularis lineages: geographically and ecologically divergent sister clades of Carex section Phacocystis (Cyperaceae). Amer J Bot 96:1896–1906. doi: 10.3732/ajb.0800404 CrossRefGoogle Scholar
  12. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol. doi: 10.1371/journal.pbio.0040088 PubMedCentralPubMedGoogle Scholar
  13. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol 29:1969–1973. doi: 10.1093/molbev/mss075 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dumortier BC (1827) Florula Belgica, Operis Majoris Prodomus. J. Casterman, Tournay, pp 145–148Google Scholar
  15. Egorova TV (1999) The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). In: Takhtajan AL (ed) St. Petersburg State Chemical-Pharmaceutical Academy, St. Petersburg and Missouri Botanic Garden Press, St. LouisGoogle Scholar
  16. Escudero M, Luceño M (2009) Systematics and evolution of Carex sects. Spirostachyae and Elatae (Cyperaceae). Pl Syst Evol 279:163–189. doi: 10.1007/s00606-009-0156-x CrossRefGoogle Scholar
  17. Escudero M, Hipp AL, Hansen T, Voje K, Luceño M (2012a) Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol 195:237–247. doi: 10.1111/j.1469-8137.2012.04137.x CrossRefPubMedGoogle Scholar
  18. Escudero M, Hipp AL, Waterway MJ, Valente LM (2012b) Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molec Phylogen Evol 63:650–655. doi: 10.1016/j.ympev.2012.02.005 CrossRefGoogle Scholar
  19. Ford BA, Iranpour M, Naczi RFC, Starr JR, Jerome CA (2006) Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. Syst Bot 31:70–82. doi: 10.1600/036364406775971813 CrossRefGoogle Scholar
  20. Ford BA, Ghazvini H, Naczi RFC, Starr JR (2012) Phylogeny of Carex subg. Vignea (Cyperaceae) based on amplified fragment length polymorphism and nrDNA Data. Syst Bot 37:913–925. doi: 10.1600/036364412X656464 CrossRefGoogle Scholar
  21. Gebauer S, Starr JR, Hoffmann MH (2014) Parallel and convergent diversification in two northern hemispheric species-rich Carex lineages (Cyperaceae). Org Divers Evol 14:247–258. doi: 10.1007/s13127-014-0171-9 CrossRefGoogle Scholar
  22. Gignac LD, Gauthier R, Rochefort L, Bubier J (2004) Distribution and habitat niches of 37 peatland Cyperaceae species across a broad geographic range in Canada. Canad J Bot 82:1292–1313CrossRefGoogle Scholar
  23. Groves RH (1994) Australian vegetation, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  24. Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98. Available at:
  25. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9. Available at:
  26. Healy AJ, Edgar E (1980) Flora of New Zealand, vol III. In: Hasselberg PD (ed) Adventive cyperaceous, petalous and spathaceous monocotyledons. Government Printer, Wellington, pp 147–181Google Scholar
  27. Heenan PB, de Lange PJ, Murray BG (1997) Carex tenuiculmis comb. et stat. nov. (Cyperaceae), a threatened red-leaved sedge from New Zealand. New Zealand J Bot 35:159–165. doi: 10.1080/0028825X.1997.10414152 CrossRefGoogle Scholar
  28. Hendrichs M, Michalski S, Begerow D, Oberwinkler F, Hellwig FH (2004) Phylogenetic relationship in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. Pl Syst Evol 246:109–125. doi: 10.1007/s00606-004-0127-1 CrossRefGoogle Scholar
  29. Hipp AL (2007) Non-uniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194. doi: 10.1111/j.1558-5646.2007.00183.x CrossRefPubMedGoogle Scholar
  30. Hipp AL (2008) Phylogeny and patterns of convergence in Carex section Ovales (Cyperaceae): evidence from ITS and 5.8S sequences. In: Naczi RFC, Ford BA (eds) Sedges: uses, diversity, and systematics of the cyperaceae, Monographs in systematic botany from the Missouri Botanical Garden, pp 197–214Google Scholar
  31. Hipp AL, Reznicek AA, Rothrock PE, Weber JA (2006) Phylogeny and classification of Carex section Ovales (Cyperaceae). Int J Pl Sci 167:1029–1048. doi: 10.1086/505538 CrossRefGoogle Scholar
  32. Jiménez-Mejías P, Escudero M, Guerra-Cárdenas S, Lye KA, Luceño M (2011) Taxonomic delimitation and drivers of speciation in the Ibero-North African Carex sect. Phacocystis river-shore group (Cyperaceae). Amer J Bot 98:1855–1867. doi: 10.3732/ajb.1100120 CrossRefGoogle Scholar
  33. Jiménez-Mejías P, Martín-Bravo S, Luceño M (2012) Systematics and taxonomy of Carex sect. Ceratocystis (Cyperaceae) in Europe: a molecular and cytogenetic approach. Syst Bot 37:382–398. doi: 10.1600/036364412X635449 CrossRefGoogle Scholar
  34. Kreczetovicz VL (1935) Carex L. In: Komorov VL (ed) Flora of the USSR, vol 3. Botanicheskii Institut Akadamiia Nauk USSR, Moscow, Leningrad, pp 86–369Google Scholar
  35. Kükenthal G (1909) Cyperaceae-Caricoideae. In: Engler A (ed) Das Pflanzenreich IV, 20. W. Englemann, Leipzig, 38:1–824Google Scholar
  36. Kukkonen I (2001) Cyperaceae. In: Ali SI, Qaiser M (eds), Flora of Pakistan, No. 206. University of Karachi, Karachi, and Missouri Botanical Garden Press, St. Louis, Missouri, pp 1–277Google Scholar
  37. Leck MA, Schütz W (2005) Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspect Pl Ecol Evol Syst 7:95–133. doi: 10.1016/j.ppees.2005.05.001 CrossRefGoogle Scholar
  38. Lewejohann K, Lobin W (1986) Über Carex paniculata s. l. und Beschreibung einer neuen Unterart von den Kapverdischen Inseln. Senckenberg Biol 67:437–447Google Scholar
  39. Lipnerová I, Bureš P, Horová L, Šmarda P (2013) Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Ann Bot (Oxford) 111:79–94. doi: 10.1093/aob/mcs239 CrossRefGoogle Scholar
  40. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003. doi: 10.1111/j.1461-0248.2008.01229.x CrossRefPubMedGoogle Scholar
  41. Luceño M (2008) Carex L. sect. Heleoglochin. In: Castroviejo S, Luceño M, Galán A, Jiménez Mejías P, Cabezas P, Medina L (eds) Flora Ibérica, Cyperaceae-Pontederiaceae, real Jardín Botánico, vol XVIII. C. S. I. C, Madrid, pp 122–124Google Scholar
  42. Manos PS, Meireles JE (2015) Biogeographic analysis of the woody plants of the Southern Appalachians: implications for the origins of a regional flora. Amer J Bot 102:780–804. doi: 10.3732/ajb.1400530 CrossRefGoogle Scholar
  43. Martin HA (1990) Tertiary climate and phytogeography in southeastern Australia. Rev Palaeobot Palynol 65:47–55. doi: 10.1016/0034-6667(90)90055-N CrossRefGoogle Scholar
  44. McGlone MS (1985) Plant biogeography and the late Cenozoic history of New Zealand. New Zealand J Bot 23:723–749. doi: 10.1080/0028825X.1985.10434240 CrossRefGoogle Scholar
  45. Molina A, Acedo C, Llamas F (2008) Taxonomy and new taxa of the Carex divulsa aggregate in Eurasia (section Phaestoglochin, Cyperaceae). Bot J Linn Soc 156:385–409. doi: 10.1111/j.1095-8339.2007.00760.x CrossRefGoogle Scholar
  46. Molina A, Acedo C, Llamas F (2012) A Comparative study of the inflorescence in the genus Carex (Cyperaceae). Syst Bot 37:365–381. doi: 10.1600/036364412X635430 CrossRefGoogle Scholar
  47. Moore LB, Edgar E (1970) Flora of New Zealand. Indigenous tracheophyta: monocotyledones except Gramineae, vol II. Government Printer, Wellington, pp 235–284Google Scholar
  48. Muellner AN, Pannell CM, Coleman A, Chase MW (2008) The origin and evolution of Indomalesian, Australasian and Pacific island biotas: insights from Aglaieae (Meliaceae, Sapindales). J Biogeogr 35:1769–1789. doi: 10.1111/j.1365-2699.2008.01935.x CrossRefGoogle Scholar
  49. Naczi RFC (2009) Insights on using morphologic data for phylogenetic analysis in sedges (Cyperaceae). Bot Rev (London) 75:67–95. doi: 10.1007/s12229-008-9017-5 CrossRefGoogle Scholar
  50. Nieto Feliner G (2011) Southern European glacial refugia: a tale of tales. Taxon 60:365–372Google Scholar
  51. Nilsson Ö (1985) Carex L. In: Davis PH (ed) Flora of Turkey and East Aegean Islands, vol 9. Edinburgh University Press, Edinburgh, pp 73–158Google Scholar
  52. Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456. doi: 10.1126/science.1140429 CrossRefPubMedGoogle Scholar
  53. Reznicek AA (1990) Evolution in sedges (Carex, Cyperaceae). Canad J Bot 68:1409–1432. doi: 10.1139/b90-180 CrossRefGoogle Scholar
  54. Reznicek AA, Catling PM (1987) Carex praegracilis (Cyperaceae) in eastern North America: a remarkable case of rapid invasion. Rhodora 89:205–216Google Scholar
  55. Roalson EH (2008) A synopsis of chromosome number variation in the Cyperaceae. Bot Rev (London) 74:209–393. doi: 10.1007/s12229-008-9011-y CrossRefGoogle Scholar
  56. Roalson EH, Friar EA (2004a) Phylogenetic relationships and biogeographic patterns in Carex section Acrocystis (Cyperaceae) using nrDNA ITS and ETS sequence data. Pl Syst Evol 243:175–187. doi: 10.1007/s00606-003-0089-8 CrossRefGoogle Scholar
  57. Roalson EH, Friar EA (2004b) Phylogenetic analysis of the nuclear alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) and combined analyses of Adh and nuclear ribosomal ITS and ETS sequences for inferring species relationships. Molec Phylogen Evol 33:671–686. doi: 10.1016/j.ympev.2004.08.005 CrossRefGoogle Scholar
  58. Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nr DNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationship in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341. doi: 10.1043/0363-6445-26.2.318 Google Scholar
  59. Rothrock PE, Reznicek AA, Ganion LR (1997) Taxomony of the Carex straminea complex (Cyperaceae). Canad J Bot 75:2177–2195. doi: 10.1139/b97-929 CrossRefGoogle Scholar
  60. Rotreklová O, Bureš P, Řepka R, Grulich V, Šmarda P, Hralová I, Zedek F, Koutecký T (2011) Chromosome numbers of Carex. Preslia 83:25–58Google Scholar
  61. Shekhovtsov SV, Shekhovtsova IN, Peltek SE (2012) Phylogeny of Siberian species of Carex sect Vesicariae based on nuclear and plastid markers. Nordic J Bot 30:343–351. doi: 10.1111/j.1756-1051.2011.01405.x CrossRefGoogle Scholar
  62. Smith DL, Faulkner JS (1976) The inflorescence of Carex and related genera. Bot Rev (London) 42:53–81CrossRefGoogle Scholar
  63. Smith TW, Waterway MJ (2008) Evaluating the taxonomic status of the globally rare Carex roanensis and allied species using morphology and amplified fragment length polymorphisms. Syst Bot 33:525–535. doi: 10.1600/036364408785679824 CrossRefGoogle Scholar
  64. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  65. Starr JR, Ford BA (2009) Phylogeny and evolution in Cariceae (Cyperaceae): current knowledge and future directions. Bot Rev (London) 75:110–137. doi: 10.1007/s12229-008-9020-x CrossRefGoogle Scholar
  66. Starr JR, Harris SA, Simpson DA (2003) Potential of the 5′ and 3′ ends of the intergenic spacer (IGS) of rDNA in the Cyperaceae: new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers. Int J Pl Sci 164:213–227. doi: 10.1086/346168 CrossRefGoogle Scholar
  67. Starr JR, Harris SA, Simpson DA (2004) Phylogeny of the unispicate taxa in Cyperaceae Tribu Cariceae I: generic relationship and evolutionary scenarios. Syst Bot 29:528–544. doi: 10.1600/0363644041744455 CrossRefGoogle Scholar
  68. Urbatsch LE, Baldwin BG, Donoghue MJ (2000) Phylogeny of the coneflowers and relatives (Heliantheae: Asteraceae) based on nuclear rDNA internal transcribed spacer (ITS) sequences and chloroplast DNA restriction site data. Syst Bot 25:539–565. doi: 10.2307/2666695 CrossRefGoogle Scholar
  69. Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Molec Ecol 18:3548–3580. doi: 10.1111/j.1365-294X.2009.04294.x CrossRefGoogle Scholar
  70. Waterway MJ, Starr JR (2007) Phylogenetic relationships in tribe Cariceae, Cyperaceae, based on nested analyses of three molecular data sets. Aliso 23:165–192. doi: 10.5642/aliso.20072301.13 CrossRefGoogle Scholar
  71. Waterway MJ, Hoshino T, Masaki T (2009) Phylogeny, species richness, and ecological specialization in Cyperaceae Tribe Cariceae. Bot Rev (London) 75:138–159. doi: 10.1007/s12229-008-9024-6 CrossRefGoogle Scholar
  72. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  73. Wilson K (1993) Cyperaceae. In: Harden GJ (ed) Flora of New South Wales, vol 4. University of New South Wales, Sydney, pp 293–396Google Scholar
  74. Wilson K (1994) Carex L. In: Walsh NG, Entwisle TJ (eds) Flora of Victoria. Ferns and allied plants, conifers and monocotyledons, vol 2. Inkata Press, Melbourne, Australia, pp 337–356. Available at:
  75. Xiang QY, Soltis DE (2001) Dispersal-vicariance analyses of intercontinental disjuncts: historical biogeographical implications for angiosperms in the Northern Hemisphere. Int J Pl Sci 162:S29–S39. doi: 10.1086/323332 CrossRefGoogle Scholar
  76. Yen AC, Olmstead RG (2000) Molecular systematics of Cyperaceae tribe Cariceae based on two chloroplast DNA regions: ndhF and trnL intron-intergenic spacer. Syst Bot 25:479–494. doi: 10.2307/2666691 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Biodiversity and Environmental Management, ESTIA Campus of PonferradaUniversity of LeónPonferradaSpain
  2. 2.The Morton ArboretumLisleUSA
  3. 3.Department of Medicinal Plant ScienceJungwon UniversityChungbukKorea
  4. 4.The Field MuseumChicagoUSA

Personalised recommendations