Plant Systematics and Evolution

, Volume 301, Issue 10, pp 2325–2339 | Cite as

Paspalum schesslii (Poaceae, Paspaleae), a new species from Mato Grosso (Brazil) with an unusual base chromosome number

  • Marisa G. Bonasora
  • Marisa T. Pozzobon
  • Ana I. Honfi
  • Gabriel H. Rua
Original Article


Paspalum schesslii, a new species from the state of Mato Grosso in central-western Brazil, is described and illustrated. The new species is related to P. malmeanum, from central-western Brazil and eastern Bolivia, and Paspalum eucomum, from central Brazil. It comprises shorter plants with leaf blades and racemes shorter than those of the related species, and spikelets having obovate, deciduous upper florets. An unexpected chromosome number 2n = 12 was found in specimens of P. schesslii; thus it differs from both P. malmeanum, which has 2n = 20, and P. eucomum, for which 2n = 30 and 2n = 32 chromosome counts are here reported for the first time. The discovery of a new species having 2n = 12, which often cohabits with diploid populations of the widespread related species, P. stellatum, is consistent with an hypothesis about the hybrid origin of the polyploid cytotypes of P. stellatum having 2n = 32 and 2n = 52 chromosomes. Moreover, such an hybrid origin involving parental species with different base chromosome numbers (x = 6 and x = 10) could also explain the occurrence of 32 chromosomes in P. eucomum, potentially documenting a speciation mechanism that is otherwise unknown in the genus.


Paspalum malmeanum Paspalum eucomum Paspalum stellatum Brazilian flora Cytogenetics Grass taxonomy 



We are indebted to Anádria S. da Silva, Regina C. de Oliveira, and José F. M. Valls for field support in Brazil; Daniel Villarroel Segarra for kindly making available to us specimens from USZ; Arne Anderberg (S) for sending us some spikelets from one isotype of P. malmeanum; Susana Perelman for statistic support; Gabriela Zarlavsky, Liliana Fabbri, and Sandra Aliscioni for helpful advice in leaf anatomy procedures; the curators of BAA, CEN, MO, SI, UB, and US for making specimens available and/or providing herbarium facilities. This research was supported by grants BR/10RED/03 (Ministerio de Ciencia, Tecnología e Innovación Productiva—MINCYT, Argentina, and Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brazil), UBACYT 20020090100194 (Universidad de Buenos Aires, Argentina), PICT 2011–2061 and PICT Bicentenario 1297 (Fondo para la Investigación Científica y Tecnológica, ANPCyT, Argentina). GHR and AIH are members of the ‘‘Carrera del Investigador,’’ CONICET, Argentina.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Supplementary material

606_2015_1231_MOESM1_ESM.pdf (16 kb)
Supplementary material 1 (PDF 15 kb)


  1. Bonasora MG, Honfi AI, Pozzobon MT, Rua GH (2011a) Un nuevo citótipo de Paspalum malmeanum y su relación con los citótipos poliploides de P. stellatum. Bol Soc Argent Bot 46(Suppl.):51Google Scholar
  2. Bonasora MG, Honfi AI, Rua GH (2011b) Citogeografía de Paspalum stellatum y P. eucomum. J Basic Appl Genet 41(Suppl.):117Google Scholar
  3. Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Biotech Histochem 31:87–90CrossRefGoogle Scholar
  4. Burson BL (1975) Cytology of some apomictic Paspalum species. Crop Sci 15:229–232CrossRefGoogle Scholar
  5. Chase A (1929) The North American species of Paspalum. Contrib US Natl Herb 28:1–310Google Scholar
  6. D’Ambrogio de Argüeso A (1986) Manual de técnicas en histología vegetal. Hemisferio Sur, Buenos AiresGoogle Scholar
  7. Davidse G, Pohl RW (1974) Chromosomes number, meiotic behavior, and notes on tropical American grasses (Gramineae). Canad J Bot 50:1441–1452CrossRefGoogle Scholar
  8. Denham S, Zuloaga F, Morrone O (2002) Systematic revision and phylogeny of Paspalum subgenus Ceresia (Poaceae: Panicoideae: Paniceae). Ann Missouri Bot Gard 89:337–399CrossRefGoogle Scholar
  9. Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Avaliable at:
  10. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba. Available at:
  11. Echarte AM, Clausen AM (1993) Afinidades morfológicas entre Paspalum distichum sensu lato y P. vaginatum (Poaceae). Bol Soc Argent Bot 29:143–152Google Scholar
  12. Echarte AM, Clausen AM, Sala CA (1992) Números cromosómicos y variabilidad morfológica de Paspalum distichum (Poaceae) en la provincia de Buenos Aires (Argentina). Darwiniana 31:185–197Google Scholar
  13. Ekman EL (1911) Neue brasilianische Gräser. Ark Bot 10:1–43Google Scholar
  14. Ellis RP (1976) A procedure for standardizing comparative leaf anatomy in the Poaceae I. The leaf-blade as viewed in transverse section. Bothalia 12:65–109CrossRefGoogle Scholar
  15. Feldman M, Levy A, Chalhoub B, Kashkush K (2012) Genomic plasticity in polyploid wheat. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Heidelberg, pp 109–135CrossRefGoogle Scholar
  16. Guerra M (2012) Citotaxonomy: the end of childhood. Pl Biosystems 146:703–710Google Scholar
  17. Guma I, Echarte A, Clausen A (1995) Análisis multivariado de caracteres epidérmicos foliares de Paspalum distichum y P. vaginatum (Poaceae). Darwiniana 33:107–114Google Scholar
  18. Halappanarar SP, Chennaveeraiah MS (1981) A report on the cytology of Paspalum compactum var. fimbriatum. Curr Sci 50:649–650Google Scholar
  19. Hojsgaard DA, Honfi I, Rua GH, Daviña J (2009) Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genet Resour Crop Evol 56:533–545CrossRefGoogle Scholar
  20. Honfi AI (2003) Citoembriología de poliploides impares en el género Paspalum (Panicoideae: Gramineae). PhD thesis, Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  21. Honfi AI, Quarin CL, Valls JFM (1990) Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30:87–94Google Scholar
  22. Iwata H, Ukai Y (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J Heredity 93:384–385. Avaliable at:
  23. Killeen T (1990) The grasses of Chiquitanía, Santa Cruz, Bolivia. Ann Missouri Bot Gard 77:125–201CrossRefGoogle Scholar
  24. Mehra PN, Chaudhary JD (1973) Gramineae. In: Löve Á (ed) IOPB chromosome number reports XLVI. Taxon 23:802–118Google Scholar
  25. Oliveira RC (2004) O genero Paspalum L., grupo Plicatula (Poaceae: Paniceae) no Brasil. PhD thesis, Universidade Estadual de Campinas, São PauloGoogle Scholar
  26. Peñaloza APS, Côrtes AL, Pozzobon MT, Santos S, Rua GH, Valls JFM (2008) Unusual chromosome numbers in Paspalum L. (Poaceae: Paniceae) from Brazil. Genet Molec Res 7:399–406CrossRefGoogle Scholar
  27. Pitman M, Burson B, Bashaw E (1987) Phylogenetic relationships among Paspalum species with different base chromosome numbers. Bot Gaz 148:130–135CrossRefGoogle Scholar
  28. Pohl RW (1980) Paspalum. In: Burger W (ed) Flora costaricensis, Fieldiana Botany 4 (new series):400–459Google Scholar
  29. Pozzobon MT, Valls JFM, Santos S (2000) Contagens cromossômicas em espécies brasileiras de Paspalum L. (Gramineae). Acta Bot Brasil 14:151–162Google Scholar
  30. Quarin CL (1974) Relaciones citotaxonómicas entre Paspalum almum Chase y P. hexastachyum Parodi (Gramineae). Bonplandia 3:115–127Google Scholar
  31. Quarin CL (1992) The nature of apomixis and its origin in Panicoid grasses. Apomixis Newslett 5:7–15Google Scholar
  32. Quarin CL, Norrmann GA (1990) Interspecific hybrids between five Paspalum species. Bot Gaz 151:366–369CrossRefGoogle Scholar
  33. Reeder JR (1984) Poaceae. In: Löve Á (ed) IOPB chromosome number reports LXXXII. Taxon 33:132–133Google Scholar
  34. Rua GH, Gróttola CM (1997) Growth form models within the genus Paspalum L. (Poaceae, Paniceae). Flora 192:65–80Google Scholar
  35. Rua GH, Speranza PR, Vaio M, Arakaki M (2010) A phylogenetic analysis of the genus Paspalum L. (Poaceae) based on cpDNA and morphology. Pl Syst Evol 288:227–243CrossRefGoogle Scholar
  36. Sader MA, Honfi AI (2007) Los cromosomas de Paspalum almum Chase. J Basic Appl Genet XVIII (Suppl.):114–115Google Scholar
  37. Sader MA, Honfi AI, Hojsgaard DH, Daviña JR (2008) Análisis citogenético en poblaciones naturales de Paspalum stellatum Humb. & Bonpl. ex Flüggé (Poaceae) de Argentina y Paraguay. J Basic Appl Genet XIX(Suppl.):114–115Google Scholar
  38. Scataglini MA, Zuloaga FO, Giussani LM, Denham SS, Morrone O (2013) Phylogeny of new world Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. Pl Syst Evol 300:1051–1070CrossRefGoogle Scholar
  39. Sede S, Escobar A, Morrone O, Zuloaga FO (2010) Chromosome studies in American Paniceae (Poaceae, Panicoideae). Ann Missouri Bot Gard 97:128–138CrossRefGoogle Scholar
  40. Selva SB (1976) Some preliminary cytological observations on a new basic number in Paspalum convexum (Gramineae). Canad J Bot 54:385–394CrossRefGoogle Scholar
  41. Silva AS (2013) Delimitação taxonômica e variabilidade genética de Paspalum polyphyllum Nees ex Trin. e Paspalum bicilium Mez (Poaceae, Paspaleae). Ms Sc thesis, Universidade de Brasília, BrasíliaGoogle Scholar
  42. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  43. Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96CrossRefPubMedGoogle Scholar
  44. Vaio M, Mazzella C, Porro V et al (2007) Nuclear DNA content in allopolyploid species and synthetic hybrids in the grass genus Paspalum. Pl Syst Evol 265:109–121CrossRefGoogle Scholar
  45. Valls JFM (2000) Impacto do conhecimento citogenético na taxonomia de Paspalum e Axonopus, Gramineae. In: Cavalcanti TB, Walter BMT (eds) Tópicos atuais em Botânica. SBB/Embrapa Recursos e Biotecnologia, Brasília, pp 57–60Google Scholar
  46. Valls JFM, Oliveira RC (2013) Paspalum eucomum. Lista de espécies da flora do Brasil. Accessed 25 Feb 2015
  47. Zarlavsky GE (2014) Histología vegetal: técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos AiresGoogle Scholar
  48. Zhang D, Lu G (2002) Shape-based image retrieval using generic Fourier descriptor. Signal Process Image 17:825–848CrossRefGoogle Scholar
  49. Zuloaga FO, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur austral: (Argentina, Bolivia, sur del Brasil, Chile, Paraguay y Uruguay). Monogr Syst Bot Missouri Bot Gard 102:1–297Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Marisa G. Bonasora
    • 1
  • Marisa T. Pozzobon
    • 2
  • Ana I. Honfi
    • 3
  • Gabriel H. Rua
    • 1
  1. 1.Cátedra de Botánica Sistemática, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação BiológicaBrasíliaBrazil
  3. 3.Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología SubtropicalUNaM-CONICETPosadasArgentina

Personalised recommendations