Skip to main content
Log in

Phylogenetic relationships in the genus Florestina (Asteraceae, Bahieae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Florestina is shown to consist of six annual species occurring mostly in arid and semiarid regions of Mexico. Florestina species are morphologically similar and consequently phylogenetic relationships within the genus are poorly understood. We present a phylogenetic study based on morphological characters, DNA sequences of nuclear non-coding spacers (ETS and ITS) and chloroplast non-coding spacers (rpl32-trnL and trnC-petN). The ETS and ITS spacer-based phylogenies allowed several well-supported conclusions: (1) the genus Florestina is monophyletic and Palafoxia is its closest relative; (2) Florestina latifolia and F. platyphylla form a strongly supported clade; (3) four taxa that are morphologically very similar, F. liebmannii, F. pedata, F. simplicifolia, and F. tripteris, are phylogenetically closely related and based on the sequence data we suggest that these should be recognized as only two species, one comprising F. pedata and F. simplicifolia, which shows wide morphological variation throughout its distributional range; and the other comprising F. liebmannii and F. tripteris; (4) F. lobata and F. purpurea are species very distinct from the remainder of the species in Florestina. Our phylogenetic analyses suggest that hybridization and introgression may be involved in the evolutionary history of Florestina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec Phylogenet Evol 1:3–16

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS Trees of Calycadenia (Compositae). Molec Phylogenet Evol 10:449–463

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Wessa BL, Panero JL (2002) Nuclear rDNA evidence for major lineages of helenioid Heliantheae (Compositae). Syst Bot 27:161–198

    Google Scholar 

  • De Queiroz A (1995) Separate versus combined analysis of phylogenetic evidence. Annual Rev Ecol Evol Syst 26:657–681

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Fehrer J, Gemeinholzer B, Chrtek J, Bräutigam S (2007) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molec Phylogenet Evol 42:347–361

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Galbany-Casals M, Susanna A, Molero Briones J (2009) Low base numbers and dysploidy in annual Helichrysum Mill. (Asteraceae: Gnaphalieae). Acta Biol Cracov Ser Bot 51:107–114

    Google Scholar 

  • Garcia-Jacas N, Susanna A, Ilarlsan R (1996) Aneuploidy in the Centaureinae: is n = 7 the end of the series? Taxon 45:39–42

    Article  Google Scholar 

  • Garnatje T, Vallès J, Vilatersana R, Garcia-Jacas N, Susanna A, Siljak-Yakovlev S (2004) Molecular cytogenetics of Xeranthemum L. and related genera (Asteraceae, Cardueae). Pl Biol 6:140–146

    Article  CAS  Google Scholar 

  • Geleta M, Bekele E, Dagne K, Bryngelsson T (2010) Phylogenetics and taxonomic delimitation of the genus Guizotia (Asteraceae) based on sequences derived from various chloroplast DNA regions. Pl Syst Evol 289:77–89

    Article  CAS  Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hoffmann O (1894) Compositae. In: Engler A, Prantl K (eds) Die natu¨rlichen Pflanzenfamilien. Wilhelm Engelmann, Leipzig, pp 324–333

    Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings Bioinformatics 9:286–298

    Article  CAS  Google Scholar 

  • Keil DJ, Pinkava DJ (1976) Chromosome counts and taxonomic notes for Compositae from the United States and Mexico. Amer J Bot 63:1393–1403

    Article  Google Scholar 

  • Keil DJ, Stuessy TF (1975) Chromosome counts of Compositae from the United States, Mexico and Guatemala. Rhodora 77:171–195

    Google Scholar 

  • Keil DJ, Stuessy TF (1977) Chromosome counts of Compositae from Mexico and the United States. Amer J Bot 64:791–798

    Article  Google Scholar 

  • Keil DJ, Luckow MA, Pinkava DJ (1988) Chromosome studies in Asteraceae from the United States, Mexico, the West Indies, and South America. Amer J Bot 75:652–668

    Article  Google Scholar 

  • Lee C, Wen J (2004) Phylogeny of Panax using chloroplast trnCtrnD intergenic region and the utility of trnCtrnD in interspecific studies of plants. Molec Phylogenet Evol 31:894–903

    Article  CAS  PubMed  Google Scholar 

  • Markos S, Baldwin BJ (2001) Higher level relationships and major lineages of Lessingia (Compositae, Astereae) based on nuclear rDNA internal and external transcribed spacer (ITS and ETS) sequences. Syst Bot 26:168–183

    Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144

    Article  PubMed  Google Scholar 

  • Mort ME, Archibald JK, Randle CP, Levsen ND, O’Leary TR, Topalov K, Wiegand CM, Crawford DJ (2007) Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci. Amer J Bot 94:173–183

    Article  Google Scholar 

  • Nixon KC (1999) WinClada ver. 1.00.08. Published by the author, Ithaca, New York

  • Nylander JA (2004) MrModeltest 2.3. Computer program and documentation distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

  • Powell AM, Kyhos DW, Raven PH (1975) Chromosome numbers in Composite. XI. Helenieae. Amer J Bot 62:1100–1103

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2009) Tracer v1.5.0. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Avaliable at: http://beast.bio.ed.ac.uk/Tracer

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Pl 5:65–84

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2005) MrBayes v. 3.1. 1 (Bayesian analysis of phylogeny). Avaliable at: http://mrbayes.csit.fsu.edu/index.php

  • Rydberg PA (1914) Florestina. N Amer Fl 34:56–58

    Google Scholar 

  • Schneider JV, Schulte K, Fuertes Aguilar J, Huertas ML (2011) Molecular evidence for hybridization and introgression in the neotropical coastal desert-endemic Palaua (Malveae, Malvaceae). Molec Phylogenet Evol 60:373–384

    Article  PubMed  Google Scholar 

  • Selvi F, Bigazzi M (2002) Chromosome studies in Turkish species of Nonea (Boraginaceae): the role of polyploidy and descending dysploidy in the evolution of the genus. Edinburgh J Bot 59:405–420

    Article  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288

    Article  CAS  Google Scholar 

  • Shinners LH (1952) The Texas species of Palafoxia (Compositae). Field Lab 20:92–102

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annual Rev Pl Biol 60:561–588

    Article  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • StatSoft Inc. (2007) Statistica (data analysis software system), version 8. Salt Soft Inc., Tulsa

    Google Scholar 

  • Sundberg SD, Cowan CP, Turner BL (1986) Chromosome counts of Latin American Compositae. Amer J Bot 73:33–38

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Torrell M, Vallès J, Garcia-Jacas N, Mozaffarian V, Gabrielian E (2001) New or rare chromosome counts in the genus Artemisia L. (Asteraceae, Anthemideae) from Armenia and Iran. Bot J Linn Soc 135:51–60

    Article  Google Scholar 

  • Turner BL (1962) Taxonomy of Hymenothrix (Helenieae, Compositae). Brittonia 14:101–120

    Article  Google Scholar 

  • Turner BL (1963) Taxonomy of Florestina (Helenieae, Compositae). Brittonia 15:27–46

    Article  Google Scholar 

  • Turner BL, Flyr D (1966) Chromosome numbers in the Compositae. X. North American species. Amer J Bot 24–33

  • Turner BL, Johnston MC (1961) Chromosome numbers in the Compositae-III. Certain Mexican species. Brittonia 13:64–69

    Article  Google Scholar 

  • Turner BL, Morris MI (1976) Systematics of Palafoxia (Asteraceae: Helenieae). Rhodora 78:567–628

    CAS  Google Scholar 

  • Vilatersana R, Susanna A, Garcia-Jacas N, Garnatje T (2000) Karyology, generic delineation and dysploidy in the genera Carduncellus, Carthamus and Phonus (Asteraceae). Bot J Linn Soc 134:425–438

    Article  Google Scholar 

  • Watanabe K, Short PS, Denda T, Konishi N, Ito M, Kosuge K (1999) Chromosome numbers and karyotypes in the Australian Gnaphalieae and Plucheeae (Asteraceae). Austral Syst Bot 12:781–802

    Article  Google Scholar 

  • Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, MA, pp 265–296

    Chapter  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgments

Fabiola Soto-Trejo wishes to thank the Posgrado en Ciencias Biológicas (UNAM) for the continuous support throughout this research. This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) through a Doctoral Dissertation grant (171389) to Fabiola Soto-Trejo. Some fieldwork visits were assisted by project PAPIIT (IN220711, S. Solórzano). Thanks MS L. Marquez (IB, UNAM) for technical support in sequences electrophoresis. P. Gaytán and J. Yañez (IBT, UNAM) synthetized quickly the primers. Thanks to Dr. J.L. Panero for providing samples from LL, TEX herbarium and also for providing valuable comments, and to Luis Antonio Sánchez-González for read previous versions of this manuscript and providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiola Soto-Trejo.

Additional information

Handling editor: Mark Mort.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 106 kb)

Supplementary material 2 (TXT 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto-Trejo, F., Schilling, E.E., Solórzano, S. et al. Phylogenetic relationships in the genus Florestina (Asteraceae, Bahieae). Plant Syst Evol 301, 2147–2160 (2015). https://doi.org/10.1007/s00606-015-1220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1220-3

Keywords

Navigation