Skip to main content
Log in

Comparative reproductive biology of Apocynum venetum L. in wild and managed populations in the arid region of NW China

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Apocynum venetum L. (dogbane) is one of the ecologically important species in the arid region of Northwest China. To select plants with higher flowering rate and fruit production, we investigated the following characteristics of A. venetum in wild and managed populations: flowering dynamics, pollen viability, pollen limitation, floral visitors and breeding system. We found that the species showed four reproductive characteristics. First, the flower production period and flowering peak were different between the wild and managed populations, longer in the managed. Second, A. venetum was pollen-limited, and pollen limitation was more intense in the wild population than in the managed. Third, in the wild, Apis mellifera L. was found to be frequent pollinator, Ophion luteus L. being the most frequent and effective visitor in the managed. Finally, the pollen ovule rate was 36.2. Self-pollination was dominant and played an important role to assure production in the breeding system. Differences in flower production influenced by artificial selection and pollinator type explain different fruit production in managed and wild populations, further, proper management could promote re-vegetation or restoration of degraded A. venetum in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aide TM (1986) The influence of wind and animal pollination on variation in outcrossing rates. Evolution 40:434–435

    Article  Google Scholar 

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  PubMed  Google Scholar 

  • Aizen MA, Ashworth L, Galetto L (2002) Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter? J Veg Sci 13:885–892

    Article  Google Scholar 

  • Arias-Cóyotl E, Stoner KE, Casas A (2006) Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated population in La Mixteca Baja, Central Mexico. Amer J Bot 93:1675–1683

    Article  Google Scholar 

  • Ashman TL, Morgan MT (2004) Explaining phenotypic selection on plant attractive characters: male function, gender balance or ecological context? Proc Roy Soc London Ser B Biol Sci 271:553–559

    Article  Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–348

    Article  Google Scholar 

  • Beattie AJ (1971) Technique for study of insect-borne pollen. Pan-Pacific Entomol 47:82

    Google Scholar 

  • Bierzychudek P (1981) Pollinator limitation of plant reproductive effort. Amer Naturalist 117:838–840

    Article  Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Butterwecka V, Nishibe S, Sasaki T, Masaru U (2001) Antidepressant effects of Apocynum venetum leaves in a forced swimming test. Biol Pharm Bull 24:848–851

    Article  Google Scholar 

  • Butterwecka V, Simbreya KS, Sasaki T, Nishibe S (2003) Long-term effects of an Apocynum venetum extract on brain monoamine levels and b-AR density in rats. Pharmacol Biochem Behav 75:557–564

    Article  Google Scholar 

  • Byers DL (1995) Pollen quantity and quality as explanations for low seed set in small populations exemplified by Eupatorium (Asteraceae). Amer J Bot 82:1000–1006

    Article  Google Scholar 

  • Cain ML, Kahn B, Silander JA, Reynolds HL (1995) Genetic variability and tradeoffs among reproductive traits in white clover (Trifolium repens). Canad J Bot 73:505–511

    Article  Google Scholar 

  • Cao YH, Zhang X, Fang YZ, Ye JN (2001) Determination of active ingredients of Apocynum Venetum by capillary electrophoresis with electrochemical detection. Mikrochim Acta 137:57–62

    Article  CAS  Google Scholar 

  • Casas A, Otero-Amaiz A, Pérez-Negrón E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot (Oxford) 100:1101–1115

    Article  Google Scholar 

  • Casper BB, Niesenbaum RA (1993) Pollen versus resource limitation of seed production: a reconsideration. Curr Sci India 65:210–214

    Google Scholar 

  • Caswell H (1985) The evolutionary demography of clonal reproduction. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, Yale, pp 187–224

    Google Scholar 

  • Chen M, Liu LD, Zhang L, Wang LJ (2012) Pollination ecological studies of Tamarix chinensis in the middle reaches of Heihe river and Yantai seashore. Chinese Bull Bot 47:264–270

    Google Scholar 

  • Corbett SA (2003) Nectar sugar content: estimating standing crop and secretion rate in the field. Apidologie 34:1–10

    Article  Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 30:32–46

    Article  Google Scholar 

  • Cruden RW, Miller-Ward S (1981) Pollen-ovule ratio, pollen size and the ratio of stigmatic area to the pollen bearing area of the pollinator: a hypothesis. Evolution 35:964–974

    Article  Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, NY, pp 1–57

    Google Scholar 

  • Fernández JD, Bosch J, Nieto-Ariza B, Gómez JM (2012) Pollen limitation in a narrow endemic plant: geographical variation and driving factors. Oecologia 170:421–431

    Article  PubMed  Google Scholar 

  • Fernando O, Stoner KE, Pérez-Negrón E, Casas A (2010) Pollination biology of Myrtillocactus schenckii (Cactaceae) in wild and managed populations of the Tehuacán Valley, México. J Arid Environm 74:897–904

    Article  Google Scholar 

  • Galen C, Newport MEA (1988) Pollination quality, seed set, and flower traits in Polemonium viscosum complementary effects of variation in flower scent and size. Amer J Bot 75:900–905

    Article  Google Scholar 

  • García-Camacho R, Totland O (2009) Pollen limitation in the alpine: a meta-analysis. Arctic Antarc Alpine Res 41:103–111

    Article  Google Scholar 

  • Gómez JM, Abdelaziz M, Lorite J, Munõz-Pajares AJ, Perfectti F (2010) Changes in pollinator fauna cause spatial variation in pollen limitation. J Ecol 98:1243–1252

    Article  Google Scholar 

  • Harder LD, Barrett SCH (1995) Mating cost of large floral displays in hermaphrodite plants. Nature 373:512–515

    Article  CAS  Google Scholar 

  • Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proc Roy Soc London Ser B Biol Sci 272:651–657

    Article  Google Scholar 

  • Hill LM, Brody AK, Tedesco CL (2008) Mating strategies and pollen limitation in a globally threatened perennial Polemonium vanbruntiae. Acta Oecol 33:314–323

    Article  Google Scholar 

  • Honsho C, Songpol S, Takuya T, Kensuke Y, Keizo Y (2007) Effective pollination period in durian (Durio zibethinus Murr.) and the factors regulating it. Sci Hort 111:193–196

    Article  Google Scholar 

  • Jarne P, Charlesworth D (1986) Spatial management of honey bees on crops. Annual Rev Ecol Syst 31:49–65

    Google Scholar 

  • Jiang Y, Li BT (1997) Flora reipublicae popularis sinicae. Science Press, BJ, p 157

    Google Scholar 

  • Johnston MO (1991) Pollen limitation of female reproduction in Lobelia cardinalis and L. siphilitica. Ecology 72:1500–1503

    Article  Google Scholar 

  • Kim DE, Yokozawa T, Hattori M, Kadaota S, Namaba T (2000) Effects of aqueous extracts of Apocynum venetum leaves on spontaneously hypertensive, renal hypertensive and NaCl-fed-hypertensive rats. J Ethnopharmacol 72:53–59

    Article  CAS  PubMed  Google Scholar 

  • Knight TM, Steet JA, Ashman TL (2006) A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. Amer J Bot 93:271–277

    Article  Google Scholar 

  • Kudo G (1993) Relationships between flowering time and fruit set of the entomophilous alpine shrub, Rhododendron aureum (Ericaceae), inhabiting snow patches. Amer J Bot 80:1300–1304

    Article  Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Article  Google Scholar 

  • Lord EM, Webster BD (1979) The stigmatic exudate of Phaseolus vulgaris L. Bot Gaz 140:266–271

    Article  CAS  Google Scholar 

  • Lu XW, Sun K (2008) A preliminary study on floral biology of Hippophae rhamnoides ssp.sinensis (Elaeagnaceae). Acta Bot Yunnanica 30:315–320

    Google Scholar 

  • Lu JH, Leng B, Zhang FP, Li C, Xu XM (2007) A preliminary study on pollination biology of Apocynum venetum L. J Shihezi Univ 3:300–302

    Google Scholar 

  • Redmond AM, Robbins LE, Travis J (1989) The effects of pollination distance on seed production in three populations of Amianthium muscaetoxicum (Liliaceae). Oecologia 79:260–264

    Article  Google Scholar 

  • Ren HL, Cao JM, Chen YY, Li GQ (2008) Current research state and exploitation of Apocynum venetum L. North Hort 7:87–90

    Google Scholar 

  • Saikkonen K, Koivunen S, Vuorisalo T, Mutikainen P (1998) Interactive effects of pollination and heavy metals on resource allocation in Potentilla anserina L. Ecology 79:1620–1629

    Article  Google Scholar 

  • Sanzol J, Herrero M (2001) The “effective pollination period” in fruit trees. Sci Hort 90:1–17

    Article  Google Scholar 

  • Sinu PA, Shivanna KR (2007) Pollination biology of large cardamom (Amomum subulatum). Curr Sci India 93:548–552

    Google Scholar 

  • Spira TP, Snow AA, Whigham DF, Leak J (1992) Flower visitation, pollen deposition, and pollen-tube competition in Hibiscus moscheutos (Malvaceae). Amer J Bot 79:428–433

    Article  Google Scholar 

  • Stefan GM, Walter D (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytol 183:470–479

    Article  Google Scholar 

  • Tamura S, Kudo G (2000) Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis. Plant Ecol 147:85–192

    Article  Google Scholar 

  • Thompson FL, Eckert CG (2004) Trade-offs between sexual and clonal reproduction in an aquatic plant: experimental manipulations vs. phenotypic correlations. J Evol Biol 17:581–592

    Article  CAS  PubMed  Google Scholar 

  • Vogler DW, Kalisz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55:202–204

    Article  CAS  PubMed  Google Scholar 

  • Waddington KD (1983) Pollination biology: foraging behavior of pollinators. Academic Press, FL, pp 213–235

    Book  Google Scholar 

  • Wang YQ, Zhang DX, Chen ZY (2004) Pollen histochemistry and pollen: ovule ratios in Zingiberaceae. Ann Bot (Oxford) 94:583–591

    Article  Google Scholar 

  • Wang LL, Han GT, Zhang YM (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69:391–397

    Article  CAS  Google Scholar 

  • Wesselingh RA (2007) Pollen limitation meets resource allocation: towards a comprehensive methodology. New Phytol 174:26–37

    Article  PubMed  Google Scholar 

  • Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science and Technology Support Program (2011BAC07B02) and National Natural Science Foundation of China (41071185). We thank Naiman Desertification Research Station and Urat Desert-grassland Research Station for all the help and support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chen.

Additional information

Handling editor: Yunpeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhao, Xy. & Zuo, Xa. Comparative reproductive biology of Apocynum venetum L. in wild and managed populations in the arid region of NW China. Plant Syst Evol 301, 1735–1745 (2015). https://doi.org/10.1007/s00606-014-1192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1192-8

Keywords

Navigation