Plant Systematics and Evolution

, Volume 301, Issue 2, pp 541–554 | Cite as

Pollen wall ultrastructure of the genus Adansonia L. species

  • Elysée N. RasoamananaEmail author
  • Onja Razanamaro
  • Perle Ramavovololona
  • Ralalaharisoa Z. Ramamonjisoa
  • Jean Luc Verdeil
  • Pascal Danthu
  • Maria Suárez-Cervera
Original Article


The genus Adansonia (baobabs, Malvaceae) includes nine tropical species grouped in the Brevitubae, Longitubae and Adansonia sections. The ultrastructure of pollen from eight species of baobabs was studied using transmission electron microscopy. The pollen grains correspond to 3-colporate and 4-colporate types. The ectexine is formed by a perforate tectum with isolated spinules. An important distinguishing feature between the Brevitubae section and the Longitubae and Adansonia sections was observed in the infratectum. The apertural region was similar in all the species studied here. However, the most unusual structure was observed in the apertural margins where the ectexine consisted of a thick lamellate annulus and the endexine had a cracked appearance; the intine was composed of a well-developed oncus under the endopore with unusual fibrillar structures and the outer layer had a remarkable structure consisting of columns. Despite the few differences observed in the structure of the pollen wall within the genus, an original arrangement of the structure found in the aperture of the Adansonia pollen grains studied provides additional information about the new types of apertural structures. This type of sporoderm adds to our knowledge of the diversity of angiosperm pollen. Moreover, this apertural structure is probably an adaptation that occurs during the formation of the pollen tube and of harmomegathy.


Pollen ultrastructure Adansonia Pollination biology Infrageneric classification 



The authors are grateful to Pat Lowe for the collection of pollen sample of A. gregorii in Australia, to the Centre de Ressources en Imagerie Cellulaire (CRIC) Montpellier assistance with the SEM observation and to the Parc Cíentific de Barcelona (PCB) for preparation of the material for TEM. We also thank Karen Newby and Daphne Goodfellow for their careful revision of our English, and Cecile Fovet-Rabot for her support. This work received financial support from the International Foundation for Sciences (IFS) and Fondation pour la Recherche sur la Biodivesrité (FRB).


  1. Alverson W, Karol K, Baum D et al (1998) Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence data. Am J Bot 85:876PubMedCrossRefGoogle Scholar
  2. Alverson WS, Whitlock BA, Nyffeler R et al (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486PubMedCrossRefGoogle Scholar
  3. Andriafidison D, Andrianaivoarivelo RA, Ramilijaona OR et al (2005) Nectarivory by endemic malagasy fruit bats during the dry season. Biotropica 38:85–90Google Scholar
  4. Baum DA (1995a) The comparative pollination and floral biology of baobabs (Adansonia-Bombacaceae). Ann Mo Bot Gard 82:322–348CrossRefGoogle Scholar
  5. Baum DA (1995b) A systematic revision of Adansonia (Bombacaceae). Ann Mo Bot Gard 82:440–470CrossRefGoogle Scholar
  6. Baum DA, Small RL, Wendel JF (1998) Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst Biol 47:181–207PubMedCrossRefGoogle Scholar
  7. Baum DA, Smith SD, Yen A et al (2004) Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am J Bot 91:1863–1871PubMedCrossRefGoogle Scholar
  8. Blackmore S, van Helvoort HAM, Punt W (1984) On the terminology, origins and functions of caveate pollen in Compositae. Rev Palaeobot Palynol 43:293–301CrossRefGoogle Scholar
  9. Edlund AF (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16:S84–S97PubMedCentralPubMedCrossRefGoogle Scholar
  10. Erdtman G (1952) Pollen morphology and plant taxonomy angiosperms. Almqvist and Wiksell, StockholmGoogle Scholar
  11. Fuchs HP (1967) Pollen morphology of the family Bombacaceae. Rev Palaeobot Palynol 3:119–132CrossRefGoogle Scholar
  12. Furness CA, Rudall PJ (2000) Aperture absence in pollen of monocotyledons. In: Harley MM, Morton CM, Blackmore S (eds) Pollen Spores Morphol. Biol. Royal Botanic Gardens, Kew, pp 249–257Google Scholar
  13. Furness CA, Rudall PJ (2001) Pollen and anther characters in monocot systematics. Grana 40:17–25CrossRefGoogle Scholar
  14. Goldblatt P, Thomas AL, Suárez-Cervera M (2004) Phylogeny of the Afro-Madagascan Aristea (Iridaceae) revisited in the light of new data on pollen morphology. Bot J Linn Soc 144:41–68CrossRefGoogle Scholar
  15. Heslop-Harrison Y (1977) The pollen-stigma interaction: pollen-tube penetration in Crocus. Ann Bot 41:913–922Google Scholar
  16. Hesse M (2000) Pollen wall stratification and pollination. Plant Syst Evol 222:1–17CrossRefGoogle Scholar
  17. Jaeger P (1945) Epanouissement et pollinisation de la fleur du baobab. Comptes Rendus Hebd Séances Académie Sci 220:369–371Google Scholar
  18. Leong Pock Tsy J-M, Lumaret R, Mayne D et al (2009) Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol Ecol 18:1707–1715PubMedCrossRefGoogle Scholar
  19. Leong Pock Tsy J-M, Lumaret R, Flaven-Noguier E et al (2013) Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression. Ann Bot 112:1759–1773PubMedCentralPubMedCrossRefGoogle Scholar
  20. Marquez J, Seoane-Camba JA, Suarez-Cervera M (1997) The role of the intine and cytoplasm in the activation and germination processes of Poaceae pollen grains. Grana 36:328–342CrossRefGoogle Scholar
  21. Nilsson S, Robyns A (1986) Bombacaceae Kunth. World Pollen Spore Flora 14:1–59Google Scholar
  22. Osborn JM, Taylor TN, Schneider EL (1991) Pollen morphology and ultrastructure of Cabombaceae: correlations with pollination biology. Am J Bot 78:1367–1378CrossRefGoogle Scholar
  23. Owen J (1974) A contribution to the ecology of the African baobab (Adansonia digitata L.). Savanna 3:1–12Google Scholar
  24. Pacini E, Hesse M (2005) Pollenkitt—its composition, forms and functions. Flora 200:399–415CrossRefGoogle Scholar
  25. Payne WW (1981) Structure and function in angiosperm pollen wall evolution. Rev Palaeobot Palynol 35:39–59CrossRefGoogle Scholar
  26. Pettigrew FRS, Jack D, Bell KL et al (2012) Morphology, ploidy and molecular phylogenetics reveal a new diploid species from Africa in the baobab genus Adansonia (Malvaceae: Bombacoideae). Taxon 61:1240–1250Google Scholar
  27. Presting D, Straka H, Friedrich B (1983) Palynologia Madagassica et Mascarenica. Familien 128 bis 146. Trop Subtrop Pflanzenwelt 44:1–93Google Scholar
  28. Ryckewaert P, Razanamaro O, Rasoamanana E et al (2011) Les Sphingidae, probables pollinisateurs des baobabs malgaches. Bois For Trop 307:57–68Google Scholar
  29. Start AN (1972) Pollination of the baobab (Adansonia digitata L.) by the fruit bat Rousettus aegiptiacus E. Geoffroy. East Afr Wildl J 10:71–72CrossRefGoogle Scholar
  30. Stroo A (2000) Pollen morphological evolution in bat pollinated plants. Plant Syst Evol 222:225–242CrossRefGoogle Scholar
  31. Suárez-Cervera M, Le Thomas A, Goldblatt P, et al. (2000) The channelled intine of Aristea major: ultrastructural modifications during development, activation and germination. In: Harley MM, Morton CM, Blackmore S (eds) Pollen Spores Morphol. Biol. Royal Botanic Gardens, Kew, pp 57–71Google Scholar
  32. Suárez-Cervera M, Gillespie L, Arcalís E et al (2001) Taxonomic significance of sporoderm structure in pollen of Euphorbiaceae: tribes Plukenetieae and Euphorbieae. Grana 40:78–104CrossRefGoogle Scholar
  33. Suárez-Cervera M, Takahashi Y, Vega-Maray A, Seoane-Camba JA (2003) Immunocytochemical localization of Cry j 1, the major allergen of Cryptomeria japonica (Taxodiaceae) in Cupressus arizonica and Cupressus sempervirens (Cupressaceae) pollen grains. Sex Plant Reprod 16:9–15Google Scholar
  34. Tanaka N, Uehara K, Murata J (2004) Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J Plant Res 117:265–276PubMedCrossRefGoogle Scholar
  35. Taylor TN, Levin DA (1975) Pollen morphology of Polemoniaceae in relation to systematic and pollination systems: scanning electronic microscopy. Grana 15:91–112Google Scholar
  36. Thiéry JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6:987–1018Google Scholar
  37. Ulrich S, Hesse M, Bröderbauer D et al (2012) Schismatoglottis and Apoballis (Araceae: Schismatoglottideae): a new example for the significance of pollen morphology in Araceae systematics. Taxon 61:281–292Google Scholar
  38. Vaishampayan N, Sharma YN (1981) On the pollen morphology of the genus Adansonia Linn. Curr Sci 50:919Google Scholar
  39. Vega-Maray AM, FernáNdez-GonzáLez D, Valencia-Barrera R et al (2003) Ultrastructural modifications in the apertural intine of Parietaria judaica L. (Urticaceae) pollen during the early stages of hydration. Grana 42:220–226CrossRefGoogle Scholar
  40. Volkova OA, Severova EE, Polevova SV (2013) Structural basis of harmomegathy: evidence from Boraginaceae pollen. Plant Syst Evol 299:1769–1779CrossRefGoogle Scholar
  41. von Balthazar M, Schönenberger J, Alverson WS et al (2006) Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Syst Evol 260:171–197Google Scholar
  42. Weber M, Ulrich S (2010) The endexine: a frequently overlooked pollen wall layer and a simple method for detection. Grana 49:83–90CrossRefGoogle Scholar
  43. Wickens GE (2008) The baobabs: pachycauls of Africa, Madagascar and Australia. Springer, BerlinCrossRefGoogle Scholar
  44. Xu F-X, Kirchoff BK (2008) Pollen morphology and ultrastructure of selected species of Magnoliaceae. Rev Palaeobot Palynol 150:140–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Elysée N. Rasoamanana
    • 1
    • 3
    Email author
  • Onja Razanamaro
    • 1
    • 3
  • Perle Ramavovololona
    • 1
  • Ralalaharisoa Z. Ramamonjisoa
    • 1
  • Jean Luc Verdeil
    • 2
  • Pascal Danthu
    • 3
    • 4
  • Maria Suárez-Cervera
    • 5
  1. 1.Département de Biologie et Ecologie végétalesUniversité d’AntananarivoAntananarivoMadagascar
  2. 2.CIRAD, UMR AGAPMontpellier Cedex 5France
  3. 3.CIRAD, DGDRS-DREAntananarivoMadagascar
  4. 4.CIRAD, DGDRS-DREMontpellier Cedex 5France
  5. 5.University of Barcelona, Faculty of PharmacyBarcelonaSpain

Personalised recommendations