Skip to main content
Log in

Reproductive outputs to floral trait variation in Nicotiana alata (Solanaceae) in Southern Brazil

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Floral traits are useful for understanding how natural selection has acted upon the evolution of plants over short time spans and in restrictive ecological scenarios. Furthermore, the spatio-temporal dynamic of inter and intraspecific interactions acts in the individual’s fitness and contributes to floral traits’ evolutionary history. Nicotiana alata presents large white flowers typical of hawkmoth pollination. A population of N. alata was monitored between 2011 and 2012, and we observed differential reproductive rates throughout the flowering period, with substantially higher values of fruit and seed set at the beginning than at the end of the flowering season. There was an indication of pollen limitation in the middle of the reproductive season, with difference in seed set between natural and hand pollination. Decreasing longevity over time was observed, as were different reproductive rates between distinctive floral life times, with higher values of fruit set in 5-day flowers (88.8 %). These results may indicate density-dependent effects in reproductive outputs and intraspecific interactions as one of the potential ecological factors impacting flowering time. Furthermore, although the hawkmoths are recognized for their unpredictability, the visits’ efficiency may contribute to adequate pollen loads in flowers with shorter longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  CAS  PubMed  Google Scholar 

  • Ashman TL, Morgan MT (2004) Explaining phenotypic selection on plant attractive characters: male function, gender balance or ecological context? Proc Royal Soc B 271:553–559

    Article  Google Scholar 

  • Ashman TL, Shoen DJ (1994) How long should flowers live? Nature 371:788–790

    Article  CAS  Google Scholar 

  • Ashman TL, Shoen DJ (1995) Floral longevity: fitness consequences and resource cost. In: Lloyd DG, Barrett SCH (eds) Floral biology: studies on floral evolution in animal-pollinated plants. New York

  • Avila RS Jr et al (2010) Tipos polínicos encontrados em esfingídeos (Lepidoptera, Sphingidae) em área de Floresta Atlântica do sudeste do Brasil: uso da palinologia no estudo de interações ecológicas. Revista Brasileira de Botânica 33:415–424

    Google Scholar 

  • Barrett SCH (1998) The evolution of mating strategies in flowering plant. vol 3. Elsevier Science, pp 335–341

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nature 3:274–284

    CAS  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. In: Caspari EW (ed) Advances in genetic. Academic Press Inc., New York

    Google Scholar 

  • Campbell DR et al (1991) Components of phenotypic selection: pollen export and flower corolla width in Ipomopsis aggregata. Evolution 45:1458–1467

    Article  Google Scholar 

  • Caruso CM (1999) Pollination of Ipomopsis aggregata (Polemoniaceae): effects of intra vs. interspecific competition. Am J Bot 86:663–668

    Article  CAS  PubMed  Google Scholar 

  • Castro S et al (2008) Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Ann Bot 102:1043–1048

    Article  PubMed Central  PubMed  Google Scholar 

  • Crick JC, Grime JP (1987) Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. New Phytol 107:403–414

    Article  Google Scholar 

  • Darling ES, Barrett SCH (2011) Sit-and-wait pollination in the spring flowering woodland plant, Trillium grandiflorum. J Pollinat Ecol 5:81–85

    Google Scholar 

  • Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London

    Google Scholar 

  • Delprete PG (2009) Taxonomic history, morphology, and reproductive biology of the Tribe Posoquerieae (Rubiaceae, Ixoroideae). Ann Mo Bot Gard 96:79–89

    Article  Google Scholar 

  • Doorn GW (1997) Effects of pollination on floral attraction and longevity. J Exp Bot 48:1615–1622

    Google Scholar 

  • Duan YW et al (2007) Interannual fluctuations in floral longevity, pollinator visitation of an alpine plant (Gentiana straminea Maxim., Gentinaceae) at two altitudes in the Qinghai-Tibetan Plateau. Plant Syst Evol 267:255–265

    Article  Google Scholar 

  • Eckhar VM (1991) The Effects of floral display on pollinator visitation vary among populations of Phacelialinearis (Hydrophyllaceae). Evol Ecol 5:370–384

    Article  Google Scholar 

  • Endress KP, Igersheim A (2000) Gynoecium structure and evolution in basal Angiosperms. Int J Plant Sci 161:211–2313

    Article  Google Scholar 

  • Evanhoe L, Galloway LF (2001) Floral longevity in Campanula americana (Campanulaceae): a comparison of morphological and functional gender phases. J Bot 4:587–591

    Google Scholar 

  • Fenster CB et al (2009) Pollination syndromes and the evolution of floral diversity in Iochroma (Solanaceae). Evolution 63:2758–2762

    Article  PubMed  Google Scholar 

  • Freitas L et al (2010) Ocorrência de limitação polínica em plantas de mata atlântica. Oecologia Australis 14:251–265

    Article  Google Scholar 

  • Goodspeed TH (1945) Studies in Nicotiana: a taxonomic organization of the genus. Univ Calif Publ Bot 18:335–344

    Google Scholar 

  • Gratani L et al (2006) Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20:549–558

    Article  Google Scholar 

  • Harder LD, Johnson SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proc Royal Soc B 272:2651–2657

    Article  Google Scholar 

  • Hegland JS et al (2009) The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol Res 24:929–936

    Article  Google Scholar 

  • Herrera C (1988) Biología y Ecología de Viola Cazorlensis. Variabilidad de Caracteres Florales. Anales Jard Bot Madrid 45:233–246

    Google Scholar 

  • Hodges SA et al (2002) Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am Nat 159:851–860

    Article  Google Scholar 

  • Hulbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211

    Article  Google Scholar 

  • Johnson SD, Steiner EK (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53

    Article  Google Scholar 

  • Johnson SD, Steiner EK (2000) Generalization versus specialization in plant pollination systems. Tree 15:140–143

    PubMed  Google Scholar 

  • Johnson SD et al (2002) Specialization for hawkmoth and long-proboscid fly pollination in Zaluzianskya section Nycterinia (Scrophulariaceae). Bot J Linn Soc 138:17–27

    Article  Google Scholar 

  • Klank C et al (2010) Effect of population size on plant reproduction and pollinator abundance in a specialized pollination system. J Ecol 98:1389–1397

    Article  Google Scholar 

  • Knight TM et al (2003) Floral density, pollen limitation, and reproductive success in Trillium grandiflorum. Oecologia 137:557–563

    Article  PubMed  Google Scholar 

  • Knight TM et al (2005) Pollen limitation of plant reproduction: pattern and process. Ann Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper-Collins, New York

    Google Scholar 

  • Kuussaari M et al (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82:384–392

    Article  Google Scholar 

  • Lyons EE, Mully TW (1992) Density effects on flowering phenology and mating potential in Nicotiana alata. Oecologia 91:93–100

    Google Scholar 

  • Maluf JRT (2000) Nova classificação climática do estado do Rio Grande do Sul. Revista Brasileira de Agrometereologia 8:141–150

    Google Scholar 

  • Miller WE (1997) Diversity and evolution of tongue length in hawkmoths (Sphingidae). J Lepidopter Soc 51(2):9–31

    Google Scholar 

  • Moody-Weys JM, Heywood JS (2001) Pollination limitation to reproductive success in the missouri evening primrose, Oenothera macrocarpa (Onagraceae). Am J Bot 88:1615–1622

    Article  Google Scholar 

  • Nilsson AL (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149

    Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Annu Rev Ecol Syst 16:15–37

    Article  Google Scholar 

  • Raguso RA et al (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284

    Article  CAS  PubMed  Google Scholar 

  • Sato H (2002) The role autonomus self-pollination in floral longevity in varieties of Impatiens hipophilla (Balsaminaceae). Am J Bot 89:263–269

    Article  PubMed  Google Scholar 

  • Stephens PA et al (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Thomson JD (1986) Comparative studies of pollen and fluorescent dye transport by bumble bees visiting Erythronium grandi Horum. Oecologia 69:561–566

    Article  Google Scholar 

  • Vázquez PD, Simberloff D (2004) Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol Monogr 74:281–308

    Article  Google Scholar 

  • Vieyra SB et al (2012) Temporal variation in selection on floral traits in Cyclopogonelatus (Orchidaceae). Evol Ecol 26:1451–1468

    Article  Google Scholar 

  • Vignoli-Silva M, Mentz LA (2005) O gênero Nicotiana L. (Solanaceae) no Rio Grande do Sul. Brasil Iheringia 60:151–173

    Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plant. Oxford University Press, Oxford

    Google Scholar 

  • Yasaka M et al (1998) Plasticity of flower longevity in Corydalis ambigua. Ecol Res 13(2):211–216

    Article  Google Scholar 

  • Zar JH (2010) Bioestatistical analisys, 5th edn. Prentice-Hall/Pearson, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiane Santos Oleques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleques, S.S., de Avila, R.S. Reproductive outputs to floral trait variation in Nicotiana alata (Solanaceae) in Southern Brazil. Plant Syst Evol 300, 2147–2153 (2014). https://doi.org/10.1007/s00606-014-1026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1026-8

Keywords

Navigation