Skip to main content
Log in

Epigenetic information can reveal phylogenetic relationships within Zygophyllales

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The desert plant Zygophyllum dumosum displays unique epigenetic constraints, not found in other perennial desert plants, namely, it possesses mono- but not di- and tri-methylated histone H3 at lysine 9 (H3K9). We investigated the proposal that lack of dimethylated H3K9 (H3K9me2) is not restricted to Z. dumosum, but a feature uniquely evolved in the Zygophyllaceae. To this end, we analyzed the state of H3K9me2 in various species including Z. simplex (annual), Peganum harmala (hemicryptophyte), Nitraria retusa (shrub) and Balanites aegyptiaca (tree) from the Negev Desert (Israel) and Larrea tridentata (creosote bush), a prominent species in the Mojave, Sonoran, and Chihuahuan Deserts of western North America. All but one of these plants showed dimethylation of H3 at lysine 4 (H3K4me2), but no detectable levels of H3K9me2. The exception was Nitraria retusa, recently separated from the Zygophyllaceae family, which possesses H3K9me2, further supporting its partition into a distinct family (Nitrariaceae). Interestingly, the analysis of Krameria cistoidea (Krameriaceae), which is listed under the Zygophyllales, showed the presence of H3K9me2. It appears that lack of H3K9me2 has uniquely evolved in the Zygophyllaceae (sensu stricto), suggesting that this phenomenon has a strong genetic background. Thus, epigenetic information revealed for Zygophyllaceae can be useful to phylogenetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Boffelli D, Martin DI (2012) Epigenetic inheritance: a contributor to species differentiation? DNA Cell Biol Suppl 1:S11–S16

    Google Scholar 

  • Carlquist S (2005) Wood anatomy of Krameriaceae with comparisons with Zygophyllaceae: phylesis, ecology and systematics. Bot J Linn Soc 149:257–270

    Article  Google Scholar 

  • Chase MW et al (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann MO Bot Gard 80:528–590

    Article  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eissenberg JC, Shilatifard A (2010) Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 339:240–249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fass E, Shahar S, Zhao J, Zemach A, Avivi Y, Grafi G (2002) Phosphorylation of histone H3 at serine 10 cannot account directly for the detachment of human heterochromatin protein 1 gamma from mitotic chromosomes in plant cells. J Biol Chem 277:30921–30927

    Article  PubMed  CAS  Google Scholar 

  • Flatscher R, Frajman B, Schönswetter P, Paun O (2012) Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation? Genet Res Int 2012:698421

    PubMed  PubMed Central  Google Scholar 

  • Granot G, Sikron-Persi N, Gaspan O, Florentin A, Talwara S, Paul LK, Morgenstern Y, Granot Y, Grafi G (2009) Histone modifications associated with drought tolerance in the desert plant Zygophyllum dumosum Boiss. Planta 231:27–34

    Article  PubMed  CAS  Google Scholar 

  • Hall MS, Katz LA (2011) On the nature of species: insights from Paramecium and other ciliates. Genetica 139:677–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein SR, Kawashty SA, Tantawy ME, Saleh NAM (2009) Chemosystematic studies of Nitraria retusa and selected taxa of Zygophyllaceae in Egypt. Plant Syst Evol 277:251–264

    Article  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    Article  PubMed  CAS  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 21:6842–6852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moreira D, Philippe H (2000) Molecular phylogeny: pitfalls and progress. Int Microbiol 3:9–16

    PubMed  CAS  Google Scholar 

  • Muellner AN, Vassiliades DD, Renner SS (2007) Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context. Plant Syst Evol 266:233–252

    Article  Google Scholar 

  • Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:e1000602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site specific histone H3 methyltransferases. Nature 406:593–599

    Article  PubMed  CAS  Google Scholar 

  • Ronse Decraene LP, De Late J, Smets EF (1996) Morphological studies in Zygophyllaceae. II. The floral development and vascular anatomy of Peganum harmala. Am J Bot 83:201–215

    Article  Google Scholar 

  • Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, de Bruijn AY, Sullivan S, Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL sequences. Syst Biol 49:306–362

    Article  PubMed  CAS  Google Scholar 

  • Sheahan MC, Chase MW (1996) A phylogenetic analysis of Zygophyllaceae R.Br. based on morphological, anatomical and rbcL DNA sequence data. Bot J Linn Soc 122:279–300

    Google Scholar 

  • Simpson BB (1989) Krameriaceae. Flor Neotropica Monogr 49:1–108

    Google Scholar 

  • Simpson BB, Weeks A, Helfgott MG, Larkin LL (2004) Species relationships in Krameria (Krameriaceae) based on ITS sequences and morphology: implications for character utility and biogeography. Syst Bot 29:97–108

    Article  Google Scholar 

  • Soltis DE et al (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106:3853–3858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zemach A, Li Y, Ben-Meir H, Oliva M, Mosquna A, Kiss V, Avivi Y, Ohad N, Grafi G (2006) Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei. Plant Cell 18:133–145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Beryl B. Simpson for critical reading and discussion of this manuscript. This research was supported by the Goldinger Trust of the Jewish Fund for the Future at the Jewish Federation of Delaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Grafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granot, G., Grafi, G. Epigenetic information can reveal phylogenetic relationships within Zygophyllales. Plant Syst Evol 300, 1819–1824 (2014). https://doi.org/10.1007/s00606-014-1008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1008-x

Keywords

Navigation