Skip to main content
Log in

Simple sequence repeat (SSR) analysis in relation to calcium transport and signaling genes reveals transferability among grasses and a conserved behavior within finger millet genotypes

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Being an excellent source of calcium, finger millet crop has nutraceutical importance. Mineral accumulation, being a polygenic trait, becomes essential to target potential candidate genes directly or indirectly involved in the regulation of calcium transport and signaling in cereals and might have influence on grain calcium accumulation. In view of this, genic microsatellite markers were developed from the coding and non-coding sequences of calcium signaling and transport genes viz. calcium transporters (channels; ATPases and antiporters), calcium-binding proteins and calcium-regulated protein kinases available in rice and sorghum. In total, 146 genic "simple sequence repeat" (SSR) primers were designed and evaluated for cross-transferability across a panel of nine grass species including finger millet. The average transferability of genic SSR markers from sorghum to other grasses was highest (73.2 %) followed by rice (63.4 %) with an overall average of 68.3 % which establishes the importance of these major crops as a useful resource of genomic information for minor crops. The transfer rate of SSR markers was also correlated with the phylogenetic relationship (or genetic relatedness) of the species. Primers with successful amplification in finger millet were further used to screen for polymorphism across a set of high and low calcium containing genotypes. The results reveal a conserved behavior across the finger millet genotypes indicating that the mineral transport and the storage machinery largely remain conserved in plants and even SSR variations in them remain suppressed during the course of evolution. Single nucleotide polymorphism and differential expression patterns of candidate genes, therefore, might be a plausible reason to explain variations in grain calcium contents among finger millet genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Akesson A, Persson S, Love J, Boss WF, Widell S, Sommarin M (2005) Overexpression of the Ca+2-binding protein calreticulin in the endoplasmic reticulum improves growth of tobacco cell suspensions (Nicotiana tabacum) in high-Ca+2 medium. Physiol Plant 123:92–99

    Article  CAS  Google Scholar 

  • Akhunov ED, Goodyear JA, Geng S, Qi L, Echalier B, Gill BS, Lazo G, Chao S, Anderson OD, Linkiewicz AM et al (2003) The organization and rate of evolution of the wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 5:753–763

    Article  Google Scholar 

  • Anderson JA, Ogihara Y, Sorrells ME, Tanksley SD (1992) Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet 83:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Argumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208

    Article  Google Scholar 

  • Asp T, Frei UK, Didion T, Nielsen KK, Lubberstedt T (2007) Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol 7:36

    Article  PubMed Central  PubMed  Google Scholar 

  • Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum–Aegilops complex, using wheat EST–SSRs. Plant Sci 166:349–356

    Article  CAS  Google Scholar 

  • Barbeau WE, Hilu KW (1993) Protein, calcium, iron and amino acid content of selected wild and domesticated cultivars of finger millet. Plant Foods Hum Nutr 43:97–104

    Article  CAS  PubMed  Google Scholar 

  • Bisht MS, Mukai Y (2001a) Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet 102:825–832

    Article  CAS  Google Scholar 

  • Bisht MS, Mukai Y (2001b) Identification of genome donors to the wild species of finger millet, Eleusine africana by genomic in situ hybridization. Breed Sc 51:263–269

    Article  CAS  Google Scholar 

  • Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909

    Article  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, Park WD, Ayres N, Cartinhour S, McCouch SR (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215–231

    Article  CAS  PubMed  Google Scholar 

  • Dida MM, Srinivasachary RS, Bennetzen JL, Gale MD, Devos KM (2007) The genetic map of finger millet, Eleusine coracana. Theor Appl Genet 114:321–332

    Article  CAS  PubMed  Google Scholar 

  • Dida MM, Wanyera N, Dunn MLH, Bennetzen JL, Devos KM (2008) Population structure and diversity in finger millet (Eleusine coracona) germplasm. Trop Plant Biol 1:131–141

    Article  Google Scholar 

  • Dubcovsky J, Luo M-C, Zhong G-Y, Bransteiter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 140:1183–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao L, Tang J, Li H, Jia J (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 12(3):245–261

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  • Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97:6224–6229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen LB, Holm PB, Lubberstedt T (2007) Cross-species amplification of 105 Lolium perenne SSR loci in 23 species within the Poaceae. Mol Ecol Notes 7:1155–1161

    Article  CAS  Google Scholar 

  • Kashi Y, Soller M (1999) Functional roles of microsatellites and minisatellites. In: Goldstein DB, Schlötterer C (eds) Microsatellites: evolution and applications. Oxford University Press, New York, pp 10–23

    Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54(2):219–233

    CAS  PubMed  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4(1):34–46

    Article  PubMed  Google Scholar 

  • Lawson MJ, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14

    Article  PubMed Central  PubMed  Google Scholar 

  • Maniatis T, Sambrook J, Fritsch EF (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Maser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • Mian MAR, Saha MC, Hopkins AA, Wang ZY (2005) Use of tall fescue EST SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48:637–647

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata T, Iizumi S, Satoh K, Ooka H, Kawai J, Carninci P, Hayashizaki Y, Otomo Y, Murakami K, Matsubara K, Kikuchi S (2004) Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Mol Biol Evol 21(10):1855–1870

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1996) Lost crops of Africa vol 1: grains. Board on Science and Technology for international development. National Academy Press, Washington

    Google Scholar 

  • Neves SS (2011) Eleusine. Wild crop relatives: genomics and breeding resources, millets and grasses. 3:113–133

  • Panwar P, Nath M, Yadav VK, Kumar A (2010) Comparative evaluation of genetic diversity using RAPD, SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (Eleusine coracana L. Gaertn.). J Genet 89(2):121–133

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Kumar Anand Raj, Dalal K, Singh NKV, Mohapatra T (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  CAS  PubMed  Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST–SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX. Plant Biol 8(4):419–429

    Article  CAS  PubMed  Google Scholar 

  • Sim SC, Yu JK, Jo Y, Sorrells ME, Jung G (2009) Transferability of cereal EST-SSR markers to ryegrass. Genome 52:431–437

    Article  CAS  PubMed  Google Scholar 

  • Srinivasachary DMM, Gale MD, Devos KM (2007) Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes. Theor Appl Genet 115:489–499

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST database for the development and characterization of gene derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Thorup GL, Kearsey FD (2000) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    Google Scholar 

  • Upadhyaya HD, Gowda CLL, Reddy VJ (2007) Morphological diversity in finger millet germplasm introduced from Southern and Eastern Africa. SAT e J 3:1

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Barkley NA, Yu JK, Dean RE, Newman ML, Sorrells ME, Pederson GA (2004) Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour 3:45–57

    Article  Google Scholar 

  • Yadav OP, Mitchell SE, Zamora A, Fulton TM, Krasovich S (2007) Development of new simple sequence repeat markers for pearl millet. SAT e Journal Vol 3

  • Yu JK, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  CAS  PubMed  Google Scholar 

  • Yuasa K, Maeshima M (2001) Organ specificity of a vacuolar Ca2+-binding protein RVCaB in radish and its expression under Ca+2-deficient conditions. Plant Mol Biol 47:633–640

    Article  CAS  PubMed  Google Scholar 

  • Zeid M, Yu JK, Goldowitz I, Denton ME, Costich DE, Jayasuriya CT, Saha M, Elshire R, Benscher D, Breseghello F, Munkvold J, Varshney RK, Belay G, Sorrells ME (2010) Cross-amplification of EST-derived markers among 16 grass species. Field Crops Res 118:28–35

    Article  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, S., Gaur, V.S., Jaiswal, J.P. et al. Simple sequence repeat (SSR) analysis in relation to calcium transport and signaling genes reveals transferability among grasses and a conserved behavior within finger millet genotypes. Plant Syst Evol 300, 1561–1568 (2014). https://doi.org/10.1007/s00606-014-0982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0982-3

Keywords