Skip to main content
Log in

Does the Platanthera dilatata (Orchidaceae) complex contain cryptic species or continuously variable populations?

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Floral phenotypic traits are expected to reflect evolutionary changes and are used as a reliable basis for species delimitation. However, when traits overlap among populations of newly emerging species, this confounds identification of evolutionarily distinct lineages and reduces taxonomic stability. In this study, we quantified variation in ten floral traits and plastid DNA sequences across 26 populations of Platanthera dilatata (Orchidaceae) in North America to determine geographic structure among populations and to evaluate support for three varieties recognized in the current taxonomy. k-means clustering analysis, in the absence of a priori designation of groups, indicated two morphologically distinct groups. Spur length was the most distinctive character between groups. The group containing larger flowers with longer spurs corresponds to the var. leucostachys and most samples in this group are from western North America. The vars. albiflora and dilatata could not be distinguished within the second group, which exhibited flowers with short to intermediate spurs and include samples from eastern and western North America. Morphological variation in P. dilatata may reflect pollinator-mediated selection, particularly in spur length, which is known to vary in association with pollinators across Platanthera. Significant genetic divergence was observed between the two groups (F ST = 0.15; P ≤ 0.001), but we did not find corresponding phylogenetic structure, which may reflect recent divergence and retention of ancestral polymorphisms. Based on these results, we suggest preserving the current intraspecific taxonomy until further studies determine the origin of floral variation and the extent of gene flow between morphologically divergent populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ames O (1910) Orchidaceae: illustrations and studies of the family Orchidaceae. The Genus Habenaria in North America, vol 4. Merrymount Press, Boston

  • Armbruster WS (1985) Patterns of character divergence and the evolution of reproductive ecotypes of Dalechampia scandens (Euphorbiaceae). Evolution 39:733–752

    Article  Google Scholar 

  • Barrett CF, Freudenstein JV (2011) An integrative approach to delimiting species in a rare but widespread mycoheterotrophic orchid. Mol Ecol 20:2771–2786

    Article  PubMed  Google Scholar 

  • Boberg E, Ågren J (2009) Despite their apparent integration, spur length but not perianth size affects reproductive success in the moth-pollinated orchid Platanthera bifolia. Funct Ecol 23:1022–1028

    Article  Google Scholar 

  • Boland JT (1993) The floral biology of Platanthera dilatata (Pursh.) Lindl. (Orchidaceae). M. S. Thesis, Memorial University of Newfoundland, St. Johns, Newfoundland

  • Brunsfeld SJ, Sullivan J, Soltis DE, Soltis PS (2001) Comparative phylogeography of Northwestern North America: a synthesis. In: Silvertown J, Antonovics J (eds) Integrating ecological and evolutionary processes in a spatial context. Blackwell Science, Oxford, pp 319–339

    Google Scholar 

  • Bulgin NL, Gibbs HL, Vickery P, Baker AJ (2013) Ancestral polymorphism in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida grasshopper sparrow (Ammodramus savannarum floridanus). Mol Ecol 12:831–844

    Article  Google Scholar 

  • Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27

    Article  Google Scholar 

  • Catling PM, Catling VR (1991) A synopsis of breeding systems and pollination in North American orchids. Lindleyana 6:187–210

    Google Scholar 

  • Cooper EA, Whittall JB, Hodges SA, Nordborg M (2010) Genetic variation at nuclear loci fails to distinguish two morphologically distinct species of Aquilegia. PLoS ONE 5:e8655. doi:10.1371/journal.pone.0008655

    Article  PubMed Central  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Cronquist A (1978) Once again, what is a species? In: Kuntson L (ed) Biosystematics in agriculture. Alleheld Osmun, Montclair, pp 3–20

    Google Scholar 

  • Darwin CR (1862) On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London

    Google Scholar 

  • Darwin CR (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • de Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 57–75

    Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • Dodd M, Silvertown EJ, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    Google Scholar 

  • Ersts PJ (2012) Geographic distance matrix generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. http://biodiversityinformatics.amnh.org/open_source/gdmg. Accessed 20 May 2012

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotype: applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol S 35:375–403

    Article  Google Scholar 

  • Haig SM, Beever EA, Chambers SM, Draheim HM, Dugger BD et al (2006) Taxonomic considerations in listing subspecies under the U. S. Endangered Species Act. Conserv Biol 20:1584–1594

    Article  PubMed  Google Scholar 

  • Hapeman JR (1997) Pollination and floral biology of Platanthera peramoena. Lindleyana 12:19–25

    Google Scholar 

  • Hapeman JR, Inoue K (1997) Plant–pollinator interactions and floral radiation in Platanthera (Orchidaceae). In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, pp 433–454

    Google Scholar 

  • Hennig C (2013) Fpc: flexible procedures for clustering. R package version 2.1.5. http://cran.r-project.org/web/packages/fpc/index.html. Accessed 21 May 2013

  • Hodges SA, Arnold ML (1995) Spurring plant diversification: are floral nectar spurs a key innovation? P Roy Soc Lond B Bio 262:343–348

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Inoue K (1983) Systematics of the genus Platanthera (Orchidaceae) in Japan and adjacent regions with special reference to pollination. J Fac Sci U Tokyo 3(13):285–374

    Google Scholar 

  • Inoue K (1986) Experimental studies on male and female reproductive success: effects of variation in spur length and pollinator activity on Platanthera mandarionorum spp. Hachijoensis (Orchidaceae). Plant Spec Biol 1:207–215

    Article  Google Scholar 

  • Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19:464–469

    Article  PubMed  Google Scholar 

  • Kipping JL (1971) Pollination studies of native orchids. M. S. Thesis, San Francisco State College, San Francisco

  • Kölreuter JG (1761) Vorläufige Nachrichten von einigen das Geschlect der Pflanzen betreffenden Versuchen und Beobachtungen. Gleditschischen Handlung, Leipzig

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Luer CA (1975) The native orchids of the United States and Canada, excluding Florida. New York Botanical Garden, New York

    Google Scholar 

  • Maad J (2000) Phenotypic selection in hawkmoth-pollinated Platanthera bifolia: targets and fitness surfaces. Evolution 54:112–123

    CAS  PubMed  Google Scholar 

  • Maad J, Alexandersson R (2004) Variable selection in Platanthera bifolia (Orchidaceae): phenotypic selection differed between sex functions in a drought year. J Evolution Biol 17:642–650

    Article  CAS  Google Scholar 

  • Maad J, Nilsson LA (2004) On the mechanism of floral shifts in speciation: gained pollination efficiency from tongue- to eye-attachment of pollinia in Platanthera (Orchidaceae). Biol J Linn Soc 83:481–495

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: the document of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) The units of biodiversity—species in practice, vol 54. Systematics Association, Chapman and Hall Ltd, London, p 381–424

  • Mayfield JA, Reiber GE, Maynard C, Czerniecki JM, Caps MT, Sangeorzan BJ (2001) Survival following lower-limb amputation in a veteran population. J Rehabil Res Dev 38:341–345

    CAS  PubMed  Google Scholar 

  • McDade LA (1995) Species concepts and problems in practice: insights from botanical monographs. Syst Bot 20:606–622

    Article  Google Scholar 

  • Medina R, Lara F, Goffinet B, Garilleti R, Mazimpaka V (2012) Integrative taxonomy of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon 61:1180–1198

    Google Scholar 

  • Mims MC, Hulsey CD, Fitzpatrick BM, Streelman JT (2010) Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol Ecol 19:940–951

    Article  PubMed  Google Scholar 

  • Moritz C (1994) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411

    Article  CAS  Google Scholar 

  • Muller K (2005) SeqState—primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinformatics 4:65–69

    Article  PubMed  Google Scholar 

  • Naomi SI (2011) On the integrated frameworks of species concepts: Mayden’s hierarchy of species concepts and de Queiroz’s unified concept of species. J Zool Syst Evol Res 49:177–184

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Tajima F (1987) Problems arising in phylogenetic inference from restriction-site data. Mol Biol Evol 4:320–323

    Google Scholar 

  • Nilsson LA (1978) Pollination ecology and adaptation in Platanthera chlorantha (Orchidaceae). Bot Notiser 131:35–51

    Google Scholar 

  • Nilsson LA (1983) Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich. and P. chlorantha (Custer) Reichb. (Orchidaceae). Bot J Linn Soc 87:325–350

    Article  Google Scholar 

  • Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149

    Article  Google Scholar 

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81:1205–1224

    Article  CAS  Google Scholar 

  • Olsen KM (1997) Pollination effectiveness and pollinator importance in a population of Heterotheca subaxillaris (Asteraceae). Oecologia 109:114–121

    Google Scholar 

  • Patt JM, Merchant MW, Williams DRE, Meeuse BJD (1989) Pollination biology of Platanthera stricta (Orchidaceae) in Olympic National Park, Washington. Am J Bot 76:1097–1106

    Article  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://R-project.org. Accessed 21 May 2013

  • Rambaut A (2010) Se-AL: sequence alignment editor. http://tree.bio.ed.ac.uk/software/seal/. Accessed 6 June 2013

  • Rieseberg LH, Church SA, Morjan CL (2003) Integration of populations and differentiation of species. New Phytol 161:59–69

    Article  Google Scholar 

  • Robertson JL, Wyatt R (1990) Evidence for pollination ecotypes in the yellow fringed orchid, Platanthera ciliaris. Evolution 44:121–133

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics, and geographic exegesis. Version 2. Method Ecol Evol 2:229–232

    Article  Google Scholar 

  • Rydberg PA (1901) The American species of Limnorchis and Piperia, North of Mexico. B Torrey Bot Club 28:605–643

    Article  Google Scholar 

  • Ryder OA (1986) Conservation and systematics: the delimitation of sub-species. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Schemske DW, Horvitz CC (1984) Variation among floral visitors in pollination ability a precondition for mutualism specialization. Science 225:519–521

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP, Schluter PM (2009) Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu Rev Entomol 54:425–446

    Article  CAS  PubMed  Google Scholar 

  • Schrenk WJ (1978) North American Platanthera’s: evolution in the making. Am Orchid Soc Bull 47:429–437

    Google Scholar 

  • Sheviak CJ, Bracht M (1998) New chromosome number determinations in Platanthera. N Am Native Orchid J 4:168–172

    Google Scholar 

  • Sheviak CJ (2002) Platanthera. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol 26. Oxford University Press, Oxford, p 551–571

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL Jr (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thiers B (2013) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/ Accessed 25 Sept 2013

  • Wallace LE (2003) An evaluation of taxonomic boundaries in Platanthera dilatata (Orchidaceae) based on morphological and molecular variation. Rhodora 105:322–336

    Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorynchus spp., and the definition of a “species” under the Endangered Species Act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Wiens JJ (2004) What is speciation and how should we study it? Am Nat 163:914–923

    Article  PubMed  Google Scholar 

  • Xu S, Schluter PM, Scopece G, Breitkopf H, Gross K, Cozzolino S, Schiestl FP (2011) Floral isolation is the main reproductive barrier among closely related sexually deceptive orchids. Evolution 65:2606–2620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is based on research conducted for a M.S. by BA. This research was funded by the Mississippi State University Department of Biological Sciences and Office of Research and Economic Development Research Initiation Program. We thank personnel at the U.S. National Forest Service for permission to collect samples, S. Datwyler for providing leaf samples, C. Sheviak for helpful discussions, and M. Welch, B. Counterman and two anonymous reviewers for providing comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa E. Wallace.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 9 kb)

Supplementary material 2 (PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikari, B., Wallace, L.E. Does the Platanthera dilatata (Orchidaceae) complex contain cryptic species or continuously variable populations?. Plant Syst Evol 300, 1465–1476 (2014). https://doi.org/10.1007/s00606-013-0974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0974-8

Keywords