Skip to main content

Advertisement

Log in

Genetic diversity and structure of Lilium pumilum DC. in southeast of Qinghai–Tibet plateau

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Lilium pumilum DC. is a valuable species not only for its showy flowers but also for its edible and medicinal values. As one of the distribution areas of L. pumilum, Qinghai–Tibet plateau has unique environmental features which have high impact on the evolution of the species. No population genetic studies have been done for L. pumilum so far. To provide the first reference data for evolutionary study and understanding the influence of eco-geographic factors on the distribution of genetic variation in L. pumilum, interspecific simple sequence repeat markers were used to investigate genetic diversity and population structure of 28 populations sampled from southeast of Qinghai–Tibet plateau. Fifteen selected primers generated a total of 147 polymorphic bands. The genetic diversity was low within populations (average He = 0.173), but higher at the species level (He = 0.392). A clear population structure and high level of genetic differentiation (F ST = 0.518) were detected by unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. All clustering approaches supported a division of the 28 populations into 4 major groups for which analysis of molecular variance confirmed a significant variation among groups (34.3 %). These population genetic parameters suggest limited gene flow among populations and evidence for isolation by distance (r = 0.272, P < 0.0001) was found in this study. Altitude, AMT and AMP explained 9.5, 11.5 and 14.0 % of the total variance among populations indicating that eco-geographic factors have a significant effect. Considering the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve L. pumilum in Qinghai–Tibet plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams WT, Strauss S, Copes D, Griffin AR, Hamrick JL, Godt M, Sherman-Broyles S (1992) Factors influencing levels of genetic diversity in woody plant species. In: Population genetics of forest trees, vol 42. Forestry sciences. Springer Netherlands, pp 95–124

  • Arzate-Fernandez AM, Miwa M, Shimada T, Yonekura T, Ogawa K (2005) Genetic diversity of Miyamasukashi-yuri (Lilium maculatum Thunb. var. bukosanense), an endemic and endangered species at Mount Buko, Saitama, Japan. Plant Species Biol 20(1):57–65

    Article  Google Scholar 

  • Austin-McRae E (1998) Lilies: a guide for growers and collectors. Timber Press, Portland

    Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20(2):135–148

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Bunn E (2005) Development of in vitro methods for ex situ conservation of Eucalyptus impensa, an endangered mallee from southwest Western Australia. Plant Cell Tissue Organ Cult 83(1):97–102

    Article  CAS  Google Scholar 

  • Chen JG, Walsh B (2009) Method for the mapping of a female partial-sterile locus on a molecular marker linkage map. Theor Appl Genet 119(6):1085–1091

    Article  PubMed  Google Scholar 

  • Cochrane JA, Crawford AD, Monks LT (2007) The significance of ex situ seed conservation to reintroduction of threatened plants. Aust J Bot 55(3):356–361

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant-populations. Heredity 72:250–259

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1:47–50

    CAS  Google Scholar 

  • Farwig N, Braun C, Boehning-Gaese K (2008) Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana (Rosaceae). Conserv Genet 9(2):317–326

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ge W, Lin H (2012) The Vegetation NDVI variation trend in Qinghai–Tibet plateau and its response to climate change. In: Remote sensing, environment and transportation engineering (RSETE), 2012 2nd International Conference on, 1–3 June 2012. pp 1–4

  • Ge XJ, Zhou XL, Li ZC, Hsu TW, Schaal B, Chiang TY (2005) Low genetic diversity and significant population structuring in the relict Amentotaxus argotaenia complex (Taxaceae) based on ISSR fingerprinting. J Plant Res 118(6):415–422

    Article  CAS  PubMed  Google Scholar 

  • Godt MJW, Walker J, Hamrick JL (1997) Genetic diversity in the endangered lily Harperocallis flava and a close relative, Tofieldia racemosa. Conserv Biol 11(2):361–366

    Article  Google Scholar 

  • Grogan J, Schulze M (2012) The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil. Biotropica 44(3):331–340

    Article  Google Scholar 

  • Gu X, Zhang Y, Niu L (2013) Pollen morphology observation of 15 wild lilies from four provinces in Western China. Acta Hortic Sinica 40(7):1389–1398

    Google Scholar 

  • Guo WH, Jeong J, Kim Z, Wang RQ, Kim E, Kim S (2011) Genetic diversity of Lilium tsingtauense in China and Korea revealed by ISSR markers and morphological characters. Biochem Syst Ecol 39(4–6):352–360

    Article  CAS  Google Scholar 

  • Hiramatsu M, Ii K, Okubo H, Huang KL, Huang CW (2002) Biogeography and origin of Lilium longiflorum and L. formosanum I—Interspecific isolating mechanisms and population genetic structure. In: Littlejohn G, Venter R, Lombard C (eds) Proceedings of the Eighth International Symposium on Flowerbulbs. Acta Horticulturae, vol 570. International Society Horticultural Science, Leuven 1, pp 47–55

  • Holsinger KE, Lewis PO (2003) Hickory: A package for analysis of population genetic data. http://darwin.eeb.uconn.edu/hickory/software.html

  • Horning ME, Webster MS (2009) Conservation genetics of remnant Lilium philadelphicum populations in the Midwestern United States. Am Midl Nat 161(2):286–300

    Article  Google Scholar 

  • Hu XR, Wang H, Chen J, Yang WC (2012) Genetic diversity of Argentina tomato varieties revealed by morphological traits, simple sequence repeat, and single nucleotide polymorphism markers. Pak J Bot 44(2):485–492

    CAS  Google Scholar 

  • Jensen RJ (1989) Ntsys-Pc—numerical taxonomy and multivariate-analysis system—version 1.40. Q Rev Biol 64(2):250–252

    Article  Google Scholar 

  • Jolly WM, Running SW (2004) Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob Change Biol 10(3):303–308

    Article  Google Scholar 

  • Kawase D, Hayashi K, Takeuchi Y, Yumoto T (2010) Population genetic structure of Lilium japonicum and serpentine plant L. japonicum var. abeanum by using developed microsatellite markers. Plant Biosyst 144(1):29–37

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant lychnis viscaria. Conserv Biol 13(5):1069–1078

    Article  Google Scholar 

  • Li QM, Xu ZF, He TH (2002) Ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biol Conserv 106(2):151–156

    Article  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Machon N, Bardin P, Mazer SJ, Moret J, Godelle B, Austerlitz F (2003) Relationship between genetic structure and seed and pollen dispersal in the endangered orchid Spiranthes spiralis. New Phytol 157(3):677–687

    Article  Google Scholar 

  • Ohsawa T, Saito Y, Sawada H, Ide Y (2008) Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora 203(3):187–196

    Google Scholar 

  • Osman A, Jordan B, Lessard PA, Muhammad N, Haron MR, Riffin NM, Sinskey AJ, Rha C, Housman DE (2003) Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphisms. Plant Physiol 131(3):1294–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Padmesh P, Mukunthakumar S, Vineesh PS, Skaria R, Kumar KH, Krishnan PN (2012) Exploring wild genetic resources of Musa acuminata Colla distributed in the humid forests of southern Western Ghats of peninsular India using ISSR markers. Plant Cell Rep 31(9):1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Persson HA, Lundquist K, Nybom H (1998) RAPD analysis of genetic variation within and among populations of Turk’s-cap lily (Lilium martagon L.). Hereditas 128(3):213–220

    Article  CAS  Google Scholar 

  • Pompe S, Hanspach J, Badeck F, Klotz S, Thuiller W, Kuhn I (2008) Climate and land use change impacts on plant distributions in Germany. Biol Lett 4(5):564–567

    Article  PubMed Central  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum B (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15(1):8–15

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1):9–17

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237

    Article  Google Scholar 

  • Rosas F, Quesada M, Lobo JA, Sork VL (2011) Effects of habitat fragmentation on pollen flow and genetic diversity of the endangered tropical tree Swietenia humilis (Meliaceae). Biol Conserv 144(12):3082–3088

    Article  Google Scholar 

  • Rosenberg NA, Burke T, Elo K, Feldmann MW, Freidlin PJ, Groenen MAM, Hillel J, Maki-Tanila A, Tixier-Boichard M, Vignal A, Wimmers K, Weigend S (2001) Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159(2):699–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skinner MW (1988) Comparative pollination ecology and floral evolution in Pacific coast Lilium. Harvard University, Cambridge

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural-populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152

    Article  Google Scholar 

  • Totland Ø (1999) Effects of temperature on performance and phenotypic selection on plant traits in alpine Ranunculus acris. Oecologia 120(2):242–251

    Article  Google Scholar 

  • Truong C, Palme AE, Felber F (2007) Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. J Evol Biol 20(1):369–380

    Article  CAS  PubMed  Google Scholar 

  • Vanderpuye AW, Elvebakk A, Nilsen L (2002) Plant communities along environmental gradients of high-arctic mires in Sassendalen, Svalbard. J Veg Sci 13(6):875–884

    Article  Google Scholar 

  • Vargas CF, Parra-Tabla V, Feinsinger P, Leirana-Alcocer J (2006) Genetic diversity and structure in fragmented populations of the tropical orchid Myrmecophila christinae var. christinae. Biotropica 38(6):754–763

    Article  Google Scholar 

  • Wen CS, Hsiao JY (2001) Altitudinal genetic differentiation and diversity of Taiwan lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters. Int J Plant Sci 162(2):287–295

    Article  CAS  Google Scholar 

  • Wiersum LK (1969) Soil water content in relation to nutrient uptake by the plant. IB, Haren

    Google Scholar 

  • Yeh FC, Yang RC, Boyle Timothy BJ, Ye ZH, Mao Judy X (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta

  • Yokota S, Yahara T (2012) Pollination biology of Lilium japonicum var. abeanum and var. japonicum: evidence of adaptation to the different availability of diurnal and nocturnal pollinators. Plant Species Biol 27(1):96–105

    Google Scholar 

  • Zhang HY, Tian K, Yu Y, Li LY, Yang YM (2009) Genetic diversity among natural populations of Ottelia acuminata (Gagnep.) Dandy revealed by ISSR. Afr J Biotechnol 8(22):6089–6093

    CAS  Google Scholar 

  • Zhou TH, Qian ZQ, Li S, Guo ZG, Huang ZH, Liu ZL, Zhao GF (2010) Genetic diversity of the endangered Chinese endemic herb Saruma henryi Oliv. (Aristolochiaceae) and its implications for conservation. Popul Ecol 52(1):223–231

  • Zhou ZL, Feng ZC, Fu CY, Zhang HL, Xia JM (2012) Steroidal and phenolic glycosides from the bulbs of Lilium pumilum DC and their potential Na+/K+ ATPase inhibitory activity. Molecules 17(9):10494–10502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful for the support from the Qinghai Science and Technology Department for the project ‘Biomass Investigation, Resources Innovation and Utilization for Lilium Pumilum in Qinghai’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Liu or Daocheng Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, N., Mo, G., van Tuyl, J.M. et al. Genetic diversity and structure of Lilium pumilum DC. in southeast of Qinghai–Tibet plateau. Plant Syst Evol 300, 1453–1464 (2014). https://doi.org/10.1007/s00606-013-0973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0973-9

Keywords