Skip to main content
Log in

Exine micromorphology and ultrastructure in Neottieae (Epidendroideae, Orchidaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The diverse epidendroid orchid tribe Neottieae is characterized by multiple transitions between autotrophy and mycoheterotrophy, allogamous and autogamous mating systems, pollen released as tetrads or monads, and pollen exine tectate or semitectate. We use transmission and scanning electron microscopy on pollen of ten species of Neottieae to investigate whether the differences in pollen aggregation and exine micromorphology and ultrastructure reflect phylogenetic relationships, or whether this variation is subject to ecological constraints. Our results showed that differences in exine micromorphology are mostly concordant with phylogenetic relationships in Neottieae, i.e. an ascending tendency of pollen ornamentation from tectate (Cephalanthera) to semitectate (e.g. Neottia). In contrast, pollen aggregation, when plotted on the most recent phylogeny, shows repeated transitions between monads and tetrads that could be related to ecological constraints. Tetrads are present in species that are nectar rewarding, whereas monads are common in deceptive species. Cephalanthera is characterized by recalcitrant pollen, including the frequent occurrence of collapsed pollen. In this genus, the observed shifts from allogamous to autogamous or cleistogamous mating systems could help to reduce pollen damage caused by exposure to dry habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman JD, Mesler MR (1979) Pollination biology of Listera cordata (Orchidaceae). Am J Bot 66(7):820–824

    Article  Google Scholar 

  • Ackerman JD, Williams NH (1980) Pollen morphology of the tribe Neottieae and its impact on the classification of the Orchidaceae. Grana 19:7–18

    Article  Google Scholar 

  • Barone Lumaga MR, Cozzolino S, Kocyan A (2006) Exine micromorphology of Orchidinae (Orchidoideae, Orchidaceae): phylogenetic constraints or ecological influences? Ann Bot 98:237–244

    Article  CAS  PubMed  Google Scholar 

  • Bateman RM, Hollingsworth PM, Preston J, Luo YB, Pridgeon AM, Chase MW (2003) Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot J Linn Soc 142:1–40

    Article  Google Scholar 

  • Bateman RM, Hollingsworth PM, Squirrell J, Hollingsworth M (2005) Tribe Neottieae: Phylogenetics. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. Genera Orchidacearum. Epidendroideae, Part 1. Oxford: Oxford University Press, pp. 487–515, Vol. 4

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  • Brodmann J, Twele R, Francke W, Hölzler G, Zhang QH, Ayasse M (2008) Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr Biol 18:740–744

    Article  CAS  PubMed  Google Scholar 

  • Burns-Balogh P (1982) Generic redefinition in subtribe Spiranthinae (Orchidaceae). Am J Bot 69:1119–1132

    Article  Google Scholar 

  • Burns-Balogh P (1983) A theory on the evolution of the exine in Orchidaceae. Am J Bot 70:1304–1312

    Article  Google Scholar 

  • Burns-Balogh P, Bernhardt P (1985) Evolutionary trends in the androecium of the Orchidaceae. Plant Syst Evol 149:119–134

    Article  Google Scholar 

  • Burns-Balogh P, Hesse M (1988) Pollen morphology of the cypripedioid orchids. Plant Syst Evol 158:165–182

    Article  Google Scholar 

  • Burns-Balogh P, Szlachetko DL, Dafni A (1987) Evolution, pollination, and systematic of the tribe Neottieae (Orchidaceae). Plant Syst Evol 156:91–115

    Article  Google Scholar 

  • Chesselet P, Linder HP (1993) Pollen morphology in the Diseae (Orchidoideae; Orchidaceae). Grana 32:101–110

    Article  Google Scholar 

  • Doyle JA, Sauquet H, Scharaschkin T, Le Thomas A (2004) Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). Int J Plant Sci 165(suppl):S55–S67

    Article  CAS  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, Portland

    Google Scholar 

  • Dressler RL, Dodson CH (1960) Classification and phylogeny in the Orchidaceae. Ann Mo Bot Gard 47:25–68

    Article  Google Scholar 

  • Ferguson IK (1990) The significance of pollen morphology in biology and systematics. Rev Palaeobot Palyno 64:129–136

    Article  Google Scholar 

  • Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal and survival. J Exp Bot 62:5267–5281

    Article  CAS  PubMed  Google Scholar 

  • Freudenstein JV (1999) Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Syst Bot 24:398–408

    Article  Google Scholar 

  • Freudenstein JV, Rasmussen FN (1997) Sectile pollinia and relationships in the Orchidaceae. Plant Syst Evol 205:125–146

    Article  Google Scholar 

  • Freudenstein JV, Rasmussen FN (1999) What does morphology tell us about orchid relationships?—A cladistic analysis. Am J Bot 86:225–248

    Article  CAS  PubMed  Google Scholar 

  • Freudenstein JV, Van den Berg C, Goldman DH, Kores PK, Molvray M, Chase MW (2004) An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. Am J Bot 91:149–157

    Article  CAS  PubMed  Google Scholar 

  • Furness CA, Rudall PJ (1999) Inaperturate pollen in monocotyledons. Int J Plant Sci 160:395–414

    Article  Google Scholar 

  • Furness CA, Rudall PJ (2003) Apertures with lids: distribution and significance of operculate pollen in monocotyledons. Int J Plant Sci 164:835–854

    Article  Google Scholar 

  • Harder LD, Johnson SD (2008) Function and evolution of aggregated pollen in angiosperms. Int J Plant Sci 169:59–78

    Article  Google Scholar 

  • Hesse M (2000) Pollen wall stratification and pollination. Plant Syst Evol 222:1–17

    Article  Google Scholar 

  • Hesse M, Burns-Balogh P, Wolff M (1989) Pollen morphology of the “primitive” epidendroid orchids. Grana 28:261–278

    Article  Google Scholar 

  • Hesse M, Halbritter H, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen Terminology: an illustrated handbook. Springer, New York

    Google Scholar 

  • Osborn JM, Taylor TN, Schneider EL (1991) Pollen morphology and ultrastructure of the Cabombaceae: correlations with pollination biology. Am J Bot 78:1367–1378

    Article  Google Scholar 

  • Pacini E, Hesse M (2002) Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Ann Bot 89:653–664

    Article  PubMed  Google Scholar 

  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palyno 143:1–81

    Article  Google Scholar 

  • Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Selosse M-A (2009) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrizal fungi. Biomed Central Biology 7:51. doi:10.11861/1741-7007-7-51

    Google Scholar 

  • Rudall PJ, Perl CD, Bateman RM (2013) Organ homologies in orchid flowers reinterpreted using the Musk Orchid as a model. Peer J 1:e26. doi:10.7717/peerj.26

    Article  PubMed  Google Scholar 

  • Schill R, Pfeiffer W (1977) Untersuchungen an Orchideenpollinien unter besonderer Berücksichtigung ihrer Feinskulpturen. Pollen Spores 19:5–118

    Google Scholar 

  • van der Cingel NA (1995) An atlas of orchid pollination. European orchids. Balkema Publishers, Rotterdam

    Google Scholar 

  • van der Pijl L, Dodson CH (1966) Orchid flowers. Their pollination and evolution. University of Miami Press, Florida

    Google Scholar 

  • Walker JW, Doyle JA (1975) The bases of Angiosperm Phylogeny. Ann Mo Bot Gard 62(3):664–723

    Article  Google Scholar 

  • Wang H, Mill RR, Blackmore S (2003) Pollen morphology and infra-generic evolutionary relationships in some Chinese species of Pedicularis (Scrophulariaceae). Plant Syst Evol 237:1–17

    Article  Google Scholar 

  • Xiang XG, Li DZ, Jin WT, Zhou HL, Li JW, Jin XH (2012) Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: evidence from molecular and morphological characters. Taxon 61:45–54

    Google Scholar 

  • Zavada MS (1983) Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. Bot Rev 49:331–379

    Article  Google Scholar 

Download references

Acknowledgments

We thank Richard Bateman for useful comments on the manuscript. We also thank two anonymous reviewers for their comments and suggestions that significantly improved the revised MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Barone Lumaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 31106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone Lumaga, M.R., Cozzolino, S., Kocyan, A. et al. Exine micromorphology and ultrastructure in Neottieae (Epidendroideae, Orchidaceae). Plant Syst Evol 300, 505–515 (2014). https://doi.org/10.1007/s00606-013-0899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0899-2

Keywords