Skip to main content

Advertisement

Log in

Genetic diversity and population structure of the mistletoe Tristerix corymbosus (Loranthaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genetic structure of a plant species is influenced by life-history traits, geographical range and ecological interactions that shape gene flow. We examined the genetic structure of the South American mistletoe Tristerix corymbosus using random amplification of polymorphic DNA. This species is found mainly in Chile and inhabits two biomes, the Chilean matorral and the temperate forest. The main pollinator agent, a hummingbird, is the same across the whole range, but the disperser assemblage varies between biomes. We selected 22 populations, eight of which were located in the Chilean matorral, where fruits are yellow and birds act as seed dispersers, and 14 populations in the temperate forest, where fruits are green and a marsupial disperses the mistletoe seeds. A total of ten primers were used to generate amplification products for 121 individuals (ca. six individuals per population) and 91 bands were scored. Results show that this mistletoe species is highly variable with 81 % of the bands polymorphic and a Shannon’s diversity index among populations of 0.634. The temperate forest shows slightly higher diversity indices than the Chilean matorral. The central region of the mistletoe geographic range was more variable than the north and the south regions, suggesting that it is a genetically mixed zone. It is likely that gene flow occurs mainly via hummingbirds moving pollen between biomes and birds moving seeds from north to south during spring migrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizen MA (2003) Influences of animal pollination and seed dispersal on winter flowering in a temperate mistletoe. Ecology 84:2613–2627

    Article  Google Scholar 

  • Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the woody flora of the temperate forest of South America: biogeographical origin and present ecological significance. Ecol Aust 8:217–236

    Google Scholar 

  • Amico GC, Aizen MA (2000) Mistletoe seed dispersal by a marsupial. Nature 408:929–930

    CAS  PubMed  Google Scholar 

  • Amico GC, Nickrent D (2009) Population structure and phylogeography of the mistletoes Tristerix corymbosus and T. aphyllus (Loranthaceae) using chloroplast DNA sequence variation. Am J Bot 96:1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Amico GC, Vidal-Russell R, Nickrent D (2007) Phylogenetic relationships and ecological speciation in the mistletoe Tristerix (Loranthaceae): the influence of pollinators, dispersers, and hosts. Am J Bot 94:558–567

    Article  CAS  PubMed  Google Scholar 

  • Amico GC, Rodriguez-Cabal MA, Aizen MA (2011) Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south-Andean mistletoe. Ecography 34:318–326

    Article  Google Scholar 

  • Clay K, Dement D, Rejmanek M (1985) Experimental evidence for host races in mistletoe (Phoradendron tomentosum). Am J Bot 72:1225–1231

    Article  Google Scholar 

  • Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RJ (2007) Can population genetic structure be predicted from life history traits? Am Nat 169:662–672

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1997) Effects of life history traits on genetic diversity in plant species. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories. Ecology, phylogeny and evolution, Cambridge University Press, Cambridge, UK, pp 102–118

  • Hamrick JL, Godt MJ, Sherman-Boyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95–124

    Article  Google Scholar 

  • Harris SA (1999) RAPDs in systematics: a useful methodology? In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular Systematics and Plant Evolution. Taylor and Francis, London, pp 211–228

    Chapter  Google Scholar 

  • Holsinger KE, Lewis PO (2003) HICKORY: a package for analysis of population genetic data V1. University of Connecticut

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vau Sci Nat 44:223–270

    Google Scholar 

  • Jerome CA, Ford BA (2002a) Comparative population structure and genetic diversity of Arceuthobium americanum (Viscaceae) and its Pinus host species: insight into host-parasite evolution in parasitic angiosperms. Mol Ecol 11:407–420

    Article  CAS  PubMed  Google Scholar 

  • Jerome CA, Ford BA (2002b) The discovery of three genetic races of the dwarf mistletoe Arceuthobium americanum (Viscaceae) provides insight into the evolution of parasitic angiosperms. Mol Ecol 11:387–405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirkup D (1998) Pollination mechanisms in African Loranthaceae. In: Polhill R, Wiens D (eds) Mistletoes of Africa. Royal Botanic Gardens, Kew, London, pp 37–60

    Google Scholar 

  • Kuijt J (1969) The Biology of parasitic flowering plants. University of California Press, Berkeley

    Google Scholar 

  • Kuijt J (1988) Revision of Tristerix (Loranthaceae). Systematic Bot Monogr 19:1–61

    Article  Google Scholar 

  • Lynch M, Milligan B (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Mathiasen RL, Nickrent DL, Shaw DC, Watson DM (2008) Mistletoes: pathology, systematics, ecology, and management. Plant Dis 92:988–1006

    Article  Google Scholar 

  • Mejnartowicz L (2006) Relationship and genetic diversity of mistletoe (Viscum album L.) subspecies. Acta Soc Bot Pol 75:39–49

    Article  CAS  Google Scholar 

  • Norton DA, Carpenter MA (1998) Mistletoes as parasites: host specificity and speciation. Trends Ecol Evol 13:101–105

    Article  CAS  PubMed  Google Scholar 

  • Norton D, de Lange P (1999) Host specificity in parasitic mistletoes (Loranthaceae) in New Zealand. Functl Ecol 13:552–559

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspecti Plant Ecol 3:93–114

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community ecology package

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Riveros M, Smith-Ramirez C (1996) Patrones de floración y fructificación en bosques del Sur de Chile. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de Chile, pp 235–250

    Google Scholar 

  • Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Repo 17:249–254

    Article  CAS  Google Scholar 

  • Vidal-Russell R (2000) Evidencias de resistencia en Nothofagus a Misodendrum: patrones de infección y consecuencias sobre la estructura genética de la planta parásita. Grade dissertation, Universidad Nacional del Comahue, Argentina

  • Wang BY, Shi L, Ruan ZY, Deng J (2011) Genetic diversity and differentiation in Dalbergia sissoo (Fabaceae) as revealed by RAPD. Genet Mol Res 10:114–120

    Article  PubMed  Google Scholar 

  • Watson DM (2001) Mistletoe—a keystone resource in forests and woodlands worldwide. Annu Rev Ecol Syst 32:219–249

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mariano Rodriguez-Cabal, Leonardo Amico, and Cecilia Smith-Ramirez for help in the field; and Thibaut Jombart for his help in answering queries on data analysis. We also thank the three anonymous reviewers and the editors for useful comments on previous versions of this manuscript. We also thank Corporación Nacional Forestal (Chile), Universidad Austral and Parques Nacionales (Argentina) for granting permits to work in some populations. GCA was supported by a Ph.D. fellowship from Consejo Nacional de investigacion Científicas y Técnicas (CONICET) during this project. Financial support was provided from Sigma Xi (to GCA) and the National Geographic Society (to MAA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo C. Amico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amico, G.C., Vidal-Russell, R., Aizen, M.A. et al. Genetic diversity and population structure of the mistletoe Tristerix corymbosus (Loranthaceae). Plant Syst Evol 300, 153–162 (2014). https://doi.org/10.1007/s00606-013-0867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0867-x

Keywords

Navigation