Skip to main content
Log in

Structural basis of harmomegathy: evidence from Boraginaceae pollen

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Upon release from the anther, pollen grains can be exposed to dry environment and dehydrate. To survive in dry conditions, the pollen wall possesses the ability to fold itself due to water loss-harmomegathic mechanism. Apertures seem to function as the primary elements of harmomegathy as they are more elastic than the remainder of the pollen wall. Contribution of other sporoderm structures, surface features, and pseudocolpi in harmomegathy are usually not considered in palynological studies. The nature of pseudocolpi has not been properly understood until now, partly because of common use of acetolysis method as a standard procedure. Different structures involved in the harmomegathy mechanism were studied in Cryptantha celosioides, Cryptantha coryi, Heliotropium europaeum, Myosotis palustris, Rindera bungei, and Rindera tetraspis. Scanning electron microscopy was used to study harmomegathy in hydrated and dehydrated pollen grains. In addition, transmission electron microscopy was used to elucidate the ultrastructural basis of pseudocolpi and other harmomegathic structures with special attention to intine structure. Our data reveal that additional flexibility of the pollen wall in Boraginaceae is provided by pseudocolpi, rugulate surface, tectate–columellate ultrastructure, and a transverse groove. Curious triangular polar poroid areas are described in M. palustris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bigazzi M, Selvi F (1998) Pollen morphology in the Boragineae (Boraginaceae) in relation to the taxonomy of the tribe. Pl Syst Evol 213:121–151

    Article  Google Scholar 

  • Blackmore S, Barnes SH (1986) Harmomegathis mechanisms in pollen grains. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 137–149

    Google Scholar 

  • Booi M, Punt W, Hoen PP (2003) The northern European pollen flora, 68. Lythraceae. Rev Palaebot Palynol 123:163–180

    Article  Google Scholar 

  • Corner EJH (1958) Transference of function. J Linn Soc (Zool) 44:33–40

    Article  Google Scholar 

  • Erdtman G (1960) The acetolysis method. A revised description. Sven Bot Tidskr 53:561–562

    Google Scholar 

  • Erdtman G (1966) Pollen morphology and plant taxonomy: angiosperms. Hafner Publishing Co., New York, p 553

    Google Scholar 

  • Halbritter H, Hesse M (2004) Principal modes of infoldings in tricolp(or)ate angiosperm pollen. Grana 43:1–14

    Article  Google Scholar 

  • Hargrove L, Simpson MG (2003) Ultrastructure of heterocolpate pollen in Cryptantha (Boraginaceae). Int J Plant Sci 164(1):137–151

    Article  Google Scholar 

  • Heslop-Harrison J (1979a) Pollen walls as adaptive systems. Ann Missouri Bot Gard 66:813–829

    Article  Google Scholar 

  • Heslop-Harrison J (1979b) An interpretation of the hydrodynamics of pollen. Amer J Bot 66(6):737–743

    Article  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107:1–78

    Article  Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S (2009) Pollen terminology: an illustrated handbook. Springer, Wien, p 266

    Google Scholar 

  • Katifori E, Albien S, Cerda E, Nelson DR, Dumais J (2010) Foldable structures and the natural design of pollen grains. PNAS 107(17):7635–7639

    Article  PubMed  CAS  Google Scholar 

  • Muller J (1979) Form and function in angiosperm pollen. Ann Missouri Bot Gard 66:593–632

    Article  Google Scholar 

  • Muller J (1981) Exine architecture and function in some Lythraceae and Sonneratiaceae. Rev Palaebot Palynol 35:93–123

    Article  Google Scholar 

  • Nowicke JW, Skvarla JJ (1974) A palynological investigation of the genus Tournefortia (Boraginaceae). Amer J Bot 61(9):1021–1036

    Article  Google Scholar 

  • Patel VC, Skvarla JJ, Raven PH (1984) Pollen characters in relation to the delimitation of Myrtales. Ann Mo Bot Gard 71:858–969

    Article  Google Scholar 

  • Payne WW (1972) Observations of harmomegathy in pollen of anthophyta. Grana 12:93–98

    Article  Google Scholar 

  • Payne WW (1981) Structure and function in angiosperm pollen wall evolution. Rev Palaeobot Palynol 35:39–59

    Article  Google Scholar 

  • Punt W (1986) Functional factors influencing pollen form. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 97–101

    Google Scholar 

  • Retief Ε, Van Wyk AE (1997) Palynology of southern African Boraginaceae: the genera Lobostemon, Echiostachys and Echium. Grana 36:271–278

    Article  Google Scholar 

  • Rowley JR, Skvarla JJ (2000) The elasticity of the exine. Grana 37:1–7

    Article  Google Scholar 

  • Thanikaimoni G (1986) Pollen apertures: form and function. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 119–136

    Google Scholar 

  • Waha M, Hesse M (1986) Aperture types within Sapranthus and Polyalthia (Annonaceae). P1 Syst Evol 161:135–146

    Article  Google Scholar 

  • Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: palynology. Ann Missouri Bot Gard 62:664–723

    Article  Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw-Hill, New York 574 p

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to electron microscopy laboratory of Moscow State University. The manuscript was improved through helpful comments from reviewers. The study was supported by RFBR, research project No 13-04-00624 A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena E. Severova or Svetlana V. Polevova.

Appendix

Appendix

Cryptantha celosioides (Eastw.) Payson (MHA) (1) Fremont Co. T 40 N R106W S14, SE EDGE of Trail Lake at inlet of torrey creek, CA 8.2 air Mi SSE of Dubois, CA 6.9 MI S ON trail lake road. Edge of meadow North of Greek. 27.07.1985. Elev. 7,400 ft. June Haines 5169 with georgia haines. Rocky mountain herbarium (RM). (2) Two miles NE of Omak, Okanogan Co. Rare on open rocky Sagebrush slopes at edge of valley; flowers white. No 16141. Col. J. A. Calder, J. A. Parmelee, R. L. Taylor. 8.05.1956. Cryptantha coryi I.M. Johnst. (MHA) Val Verde Co.: About ten miles east of Langtry Corolla white, turning orange with age. D. S. Correl and Helen B. Correl. No 30818. 3.04.1965. Heliotropium europaeum L. (MW) Tauricheskaya province, Berdyansk county, Girsovka village, Plowing-salt marshes. 18.07.1998. D. Duz. Myosotis palustris (L.) L. Botanical Garden of the Komarov Botanical Institute. 07.2010. Rindera bungei Gürke (MHA) USSR. Turkmenistan. Ashhabatskaya area. Central Kopetdag, Gopal-Dag, on the rocky substrate summit. 2,886 m above sea level. Coll. and Def. V. V. Nikitin. 06.25.1958. Rindera tetraspis Pall. (MHA) Uzbekistan, western spur of Zeravshanskogo ridge, env. per. Tyahtakaracha. Altitude of about 1,700 m, rocky slope. 27.04.1958. Col. A. K. Skvortsov, Def. N. Y. Stepanova. 10.06.2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkova, O.A., Severova, E.E. & Polevova, S.V. Structural basis of harmomegathy: evidence from Boraginaceae pollen. Plant Syst Evol 299, 1769–1779 (2013). https://doi.org/10.1007/s00606-013-0832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0832-8

Keywords

Navigation