Plant Systematics and Evolution

, Volume 299, Issue 5, pp 853–864 | Cite as

Flow cytometric and karyological analyses of Calendula species from Iberian Peninsula

  • Sofia Nora
  • Sílvia Castro
  • João Loureiro
  • Ana Carla Gonçalves
  • Helena Oliveira
  • Mariana Castro
  • Conceição Santos
  • Paulo SilveiraEmail author
Original Article


Calendula L. (Asteraceae) is a taxonomically and cytologically complex genus due to its high morphological and karyological variation. To gather consistent cytological information aiming to consolidate the existing knowledge, sustain the taxonomic revision of the genus and explore the evolutionary relationships among species, the genome size and chromosome number of the Iberian Peninsula representatives of this genus were assessed. The study included 11 taxa that occur in the Iberian Peninsula, one in Madeira and two from Morocco. Chromosome counts were made using the squash technique in root tips and flower buds, while nuclear DNA contents were assessed using propidium iodide flow cytometry. The following chromosome numbers are reported: 2n = 44 for C. arvensis, 2n = 30 for C. tripterocarpa, and 2n = 32 for the remaining Iberian taxa. The genome size of Calendula species was assessed for the first time and ranged from 1.75 pg/2C in C. maroccana to 5.41 pg/2C in C. arvensis. Within the complex formed by C. incana and C. suffruticosa, a gradient of genome size values was obtained. Intraspecific variation in genome size was detected in some taxa. The obtained genome size values and their variation are discussed in the light of the theories proposed for the speciation of the genus, with events of hybridization, genome duplication and dysploidy being hypothesized to play a major role in the evolution of this genus.


Calendula Chromosome numbers Flow cytometry Genome size Iberian Peninsula Karyology Nuclear DNA content 



The authors are grateful to the ICNF (Instituto de Conservação da Natureza e das Florestas), namely Dr Luis Silva (UACI) and the Directors of several Departments (Departamento de Gestão de Áreas Classificadas—Zonas Húmidas, Departamento de Gestão de Áreas Classificadas do Litoral de Lisboa e Oeste, Departamento de Gestão de Áreas Classificadas Sul) for allowing the collection of samples on several nature reserves; to Miguel Sequeira, from the Biology Department of the University of Madeira, for providing Calendula incana ssp. maderensis material; to Abelardo Aparicio for methodological help in the chromosome counts. Although mostly not directly used for this study, but important to the general knowledge of the genus and planning of field work, we are grateful to the Directors of AVE, BC, BCN, BM, BR, C, COI, ELVE, G, GAT, GDA (GDAC), HAL, K, LD, MA, MAF, MGC, O, P, PO, RAB, SALA, SANT, SEV, TFMC, US herbaria for the loan of herbarium vouchers and/or for allowing us to visit them and study their collections on site and/or for making images of specimens available for study. Additionally, BH and HAL offered duplicates of some Calendula specimens. Portuguese Foundation for Science and Technology and European Social Fund financed the work of SC with the scholarship FCT/BPD/41200/2007, the work of HO with the scholarship SFRH/BPD/48853/2008 and the work of AG with the scholarship SFRH/BD/51464/2011.

Supplementary material

606_2013_767_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 65 kb)


  1. Albers F, Pröbsting W (1998) Chromosomenatlas der Farn- und Blütenpflanzen Deutschlands. In: Wisskirchen R, Haeupler H (eds) Standardliste der Farn- und Blütenpflanzen Deutschlands-Stuttgart. Bundesamt für Naturschutz & Verlag, Stuttgart, pp 562–616Google Scholar
  2. Aparicio A (1989) Números Cromosomáticos de Plantas Occidentales. An Jard Bot Madrid 45:483–494Google Scholar
  3. Baltisberger M, Huber W (1987) Chromosome number report. Int Organ Pl Biosyst Newslett (Zurich) 9:4–5Google Scholar
  4. Baltisberger M, Widmer A (2006) Chromosome numbers of plant species from the Canary Islands. Bot Helv 116:9–30CrossRefGoogle Scholar
  5. Bennett MD, Leitch I (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590PubMedCrossRefGoogle Scholar
  6. Bolkhovskikh Z, Grif V, Matvejeva O, Zakharyeva O (1969) Chromosome numbers of flowering plants. Academy of Sciences URSS, LeningradGoogle Scholar
  7. Borgen L (1974) Chromosome Numbers of Macaronesian flowering plants II. Nor J Bot 21:195–210Google Scholar
  8. Borgen L (1975) Chromosome numbers of vascular plants from macaronesia. Nor J Bot 22:70–76Google Scholar
  9. Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, PortlandGoogle Scholar
  10. Campos JMS, Sousa SM, Silva PS, Pinheiro LC, Sampaio F, Viccini LF (2011) Chromosome numbers and DNA C values in the genus Lippia (Verbenaceae). Plant Syst Evol 291:133–140CrossRefGoogle Scholar
  11. Carr GD, King RM, Powell AM, Robinson H (1999) Chromosome numbers in Compositae. XVIII. Am J Bot 86:1003–1013PubMedCrossRefGoogle Scholar
  12. Cullis AC (2005) Mechanisms and control of rapid genomic changes in flax. Ann Bot 95:201–206PubMedCrossRefGoogle Scholar
  13. Dahlgren R, Karlsson T, Lassen P (1971) Studies in the flora of the Balearic Islands. I. Bot Not 124:249–269Google Scholar
  14. Dalgaard V (1986) Chromosome studies in flowering plants from Macaronesia. An Jard Bot Madrid 43:83–111Google Scholar
  15. Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants, 2nd edn. George Allen and Unwind Ltd., LondonGoogle Scholar
  16. Diaz Linfante Z, Luque T, Santa Barbara C (1992) Chromosome numbers of plants collected during Iter Mediterraneum. Bocconea 3:229–250Google Scholar
  17. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26CrossRefGoogle Scholar
  18. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128PubMedCrossRefGoogle Scholar
  19. Ehrendorfer F (1970) Mediterran-mitteleuropäische Florenbeziehungen im Lichte cytotaxonomischer Befunde. Feddes Repert 81:3–32CrossRefGoogle Scholar
  20. Fernandes A, Queirós M (1971a) Contribuition à la connaissance cytotaxonomique des Spermatophyta du Portugal. Bol Soc Broteriana 45:5–21Google Scholar
  21. Fernandes A, Queirós M (1971b) Sur la caryologie de quelques plantes récoltées pendant la III Reunion de Botanique Péninsulaire. Mem Soc Broteriana 21:343–385Google Scholar
  22. Gallego MJ (1983) Nota sobre las especies españolas del género Calendula L. Lagascalia 12:131–132Google Scholar
  23. Garcia S, Garnatje T, Twibell JD, Vallès J (2006) Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars. Genome 49:244–253PubMedCrossRefGoogle Scholar
  24. Garcia-Jacas N, Susanna A, Ilarlsan R (1996) Aneuploidy in the Centaureinae: is n = 7 the end of the series? Taxon 45:39–42CrossRefGoogle Scholar
  25. Goldblatt P, Johnson DE (1979) Index to plant chromosome numbers. Missouri Botanical Garden, St. LouisGoogle Scholar
  26. Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  27. Gupta PK (1969) Cytological investigations in some Indian Compositae. Cytologia 34:429–438CrossRefGoogle Scholar
  28. Gupta RC, Gill BS (1989) Cytopalynology of North and Central Indian Compositae. J Cytol Genet 24:96–105Google Scholar
  29. Gupta PK, Agarwal DK, Srivastava AK (1972) Further cytological investigations in Indian Compositae. Cytologia 37:581–593CrossRefGoogle Scholar
  30. Heyn CC, Joel A (1983) Reproductive relationships between annual species of Calendula (Compositae). Pl Syst Evol 143:311–329CrossRefGoogle Scholar
  31. Heyn CC, Dagan O, Nachman B (1974) The annual Calendula species: taxonomy and relationships. Israel J Bot 23:169–201Google Scholar
  32. Humphries CJ, Murray BG, Bocquet G, Vasudevan K (1978) Chromosome numbers of phanerogams from Morocco and Algeria. Bot Notiser 131:391–406Google Scholar
  33. Janaki-Ammal EK, Sobti SN (1962) Chromosome relationships in Calendula species. Proc Indian Acad Sci Sect B55:128–130Google Scholar
  34. Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Syst 38:847–876CrossRefGoogle Scholar
  35. Lanza D (1919) Monografia del genere Calendula L. Atti R Acad Sci Palermo Ser III 11Google Scholar
  36. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linnean Soc 82:651–663CrossRefGoogle Scholar
  37. Linnaeus C (1753) Species Plantarum. 1st ed. Impensis Laurentii Salvii, Holmiae (Stockholm)Google Scholar
  38. Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527PubMedCrossRefGoogle Scholar
  39. Loureiro J, Kopecký D, Castro S, Santos C, Silveira P (2007a) Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. Pl Syst Evol 269:89–105CrossRefGoogle Scholar
  40. Loureiro J, Rodriguez E, Dolezel J, Santos C (2007b) Two new nuclear isolation buffers for plant DNA flow cytometry—a test with 37 species. Ann Bot 100:875–888PubMedCrossRefGoogle Scholar
  41. Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21Google Scholar
  42. Löve A, Kjellqvist E (1974) Cytotaxonomy of Spanish Plants. IV. Dicotyledons: Caesalpiniaceae–Asteraceae. Lagascalia 4:153–211Google Scholar
  43. Májovský J (1978) Index of Chromosome Numbers of Slovakian Flora (Part 6). Acta Fac Rerum Nat Univ Comen Bot 26:1–42Google Scholar
  44. Malallah GA, Brown G (1999) Determination of chromosome numbers of Kuwaiti Flora. I. Cytologia 64:181–196CrossRefGoogle Scholar
  45. Marchi P, Capineri R, D’Amato G (1974) Numeri Cromosomici per la Flora Italiana. Inf Bot Ital 6:303–319Google Scholar
  46. Martín Ciudad A (1991) Números cromosomáticos de plantas vasculares ibéricas. Archivos de Flora Iberica. 1. Real Jardín Botánico, ICYT, CSIC, MadridGoogle Scholar
  47. Mathew A, Mathew PM (1988) Cytological studies on the south Indian Compositae. In: Nair PKK (ed) Cytological research monographs. Karolbagh, New Delhi: Today and Tomorrow’s Glimpses in Plant Research, vol 8, pp 1–177Google Scholar
  48. Mehra PN, Remanadan P (1976) Cytological Investigations on Indian Compositae. V. Tribes: Artotideae. Cynareae. Calenduleae and Mutiseae. Nucleus 19:8–12Google Scholar
  49. Mehra PN, Gill BS, Mehta JK, Sidhu SS (1965) Cytological investigations on the Indian Compositae. I. North-India Taxa. Caryologia 8:35–68Google Scholar
  50. Meikle RD (1976) Calendula L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 4., Plantaginaceae to compositaeCambrigde University Press, Cambrigde, pp 206–207Google Scholar
  51. Mesquita Rodrigues JE (1953) Contribuição para o conhecimento cariológico das halófitas e psamófitas litorais. Univ Coimbra, PortugalGoogle Scholar
  52. Meusel H, Ohle H (1966) Zur taxonomie und cytologie der gattung Calendula. Österr Bot Z 113:191–210CrossRefGoogle Scholar
  53. Murin A (1993) Karyological study of the ornamental plants of the Slovak flora. Biologia 48:441–445Google Scholar
  54. Murin A (1997) Karyotaxonomy of some medicinal and aromatic plants. Thaiszia 7:75–88Google Scholar
  55. Nagato Y, Yamamoto K, Yamashita H (1981) Variation of DNA content in Asian rice. Jpn J Genet 56:483–493CrossRefGoogle Scholar
  56. Negodi G (1936) Contributo alla cariologia del genero Calendula L. Rend Accad Lincei cl Sci Fis Mat Nat 23:88–91Google Scholar
  57. Nordenstam B (1972) Chromosome numbers in some compositae from Egypt. Bot Notiser 125:393–396Google Scholar
  58. Nordenstam B (1994) Tribe Calenduleae. In: Bermer K (ed) Asteraceae. Cladistics and Classification. Timber Press, Portland, pp 365–376Google Scholar
  59. Nordenstam B, Källersjö M (2009) Calenduleae. In: Funk VA, Susanna A, Stuessy T, Bayer RB (eds) Systematics. Evolution and biogeography of the compositae, IAPT, p 527Google Scholar
  60. Norlindh T (1946) Studies in the Calenduleae II. Phytogeography and interrelation. Bot Notiser 4:471–506Google Scholar
  61. Norlindh T (1963) Chromosome numbers in the Calenduleae L. With discussions on relationships. Hybridization and phytogeography. Bot Notiser 116:193–209Google Scholar
  62. Norlindh T (1977) Calenduleae- Systematic review, chap 34. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae. Academic Press, London, pp 961–987Google Scholar
  63. Oberprieler C, Vogt R (1993) Chromosome numbers of North African phanerogams. II. Willdenowia 23:211–238Google Scholar
  64. Ohle H (1974) Beiträge zur Taxonomie der Gattung Calendula. II. Taxonomische Revision der südeuropäischen perennierenden Calendula-Sippen. Feddes Repert 85:245–283CrossRefGoogle Scholar
  65. Ohle H (1975a) Beiträge zur Taxonomie und Evolution der Gattung Calendula. III. Revision der marokkanischen perennierenden Sippen unter Berücksichtigung einiger marokkanischer Annueller. Feddes Repert 86:1–17CrossRefGoogle Scholar
  66. Ohle H (1975b) Beiträge zur Taxonomie der Gattung Calendula. IV.Revision der algerisch-tunesischen perennierenden Calendula-Sippen unter Berücksichtigung einiger marokkanisch-algerischer annueller und der marokkanischen und südeuropäischen perennierenden. Feddes Repert 86:525–541CrossRefGoogle Scholar
  67. Pastor Díaz J (1997) Atlas cromosómico de la flora vascular de Andalucía Occidental. Univ Sevilla, SevillaGoogle Scholar
  68. Pawlowski B, Jasiewicz A (ed) (1971) Flora Polska, vol 12. Warsaw-KrakowGoogle Scholar
  69. Pazy B (2000) Flora Palaestina: chromosome numbers. Israel J Plant Sci 48:7–32CrossRefGoogle Scholar
  70. Pogan E, Wcislo H (1990) Chromosome numbers of polish angiosperms. Acta Biol Crac Bot 32:1–169Google Scholar
  71. Pogan E, Jankun A, Sawicka Z (1989) Further studies in chromosome numbers of polish angiosperms (part 22). Acta Biol Crac Bot 31:1–17Google Scholar
  72. Powell AM, Kyhos DW, Raven PH (1974) Chromossome numbers in Compositae. X. Am J Bot 61:909–913CrossRefGoogle Scholar
  73. Press JR, Short MJ (eds) (1994) Flora of Madeira. Natural History Museum, HMSO, pp 360–361Google Scholar
  74. Queirós M (1973) Contribuição para o conhecimento citotaxonómico das spermatophyta de Portugal. Bol Soc Broteriana 47:299–315Google Scholar
  75. Rashid A (1974) Chromosome numbers of some Mediterranean plants. Bangladesh J Bot 3:75–82Google Scholar
  76. Ruiz de Clavijo E (1989) Números cromossomáticos de plantas occidentales, 619–630. An Jard Bot Madrid 47:431–437Google Scholar
  77. Ruiz de Clavijo E (1991) Notas cariológicas sobre algunas especies norteafricanas. Acta Bot Malacitana 16:449–454Google Scholar
  78. Scrugli A (1974) Numeri per la flora italiana:190–195. Inf Bot Ital 6:37–43Google Scholar
  79. Semple JC, Watanable K (2009) A review of chromosome numbers in the Asteraceae with hypotheses on chromosome base number evolution. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. IAPT, Vienna, pp 61–72Google Scholar
  80. Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61Google Scholar
  81. Soliman MI (2003) Genetic diversity of achene heteromorphism in Egyptian Calendula micrantha Tineo et Guss. Asian J Plant Sci 2:782–789CrossRefGoogle Scholar
  82. Srivastava S, Lavania UC (1991) Evolutionary DNA variation in Papaver. Genome 34:763–768CrossRefGoogle Scholar
  83. Strother JL, Watson LE (1997) Document of chromosome numbers 1997. I. Chromosome numbers in Compositae from Morocco and Spain. Sida 17:627–629Google Scholar
  84. Talavera S (1979) Numeros Cromosomicos para la Flora Española. Numeros 84–120. Lagascalia 9:115–130Google Scholar
  85. Talavera S, Devesa JA, Galiano EF (1984) Notas cariosistemáticas sobre plantas Norteafricanas. I. Compositae. Candollea 39:271–280Google Scholar
  86. Temsch EM, Greilhuber J (2010) Genome size in Dipsacaceae and Morina longifolia (Morinaceae). Pl Syst Evol 289:45–56CrossRefGoogle Scholar
  87. Turpeinen T, Kulmala J, Nevo E (1999) Genome size variation in Hordeum spontaneum populations. Genome 42:1094–1099PubMedGoogle Scholar
  88. Valdés B, Parra R (1997) Números cromosómicos de plantas de Marruecos, I. Lagascalia 20:161–166Google Scholar
  89. Van Loon JC (1974) A cytological investigation of flowering plants from the Canary Islands. Acta Bot Neerl 23:113–124Google Scholar
  90. Vogt R, Aparício A (1999) Chromosome numbers of plants collected during Iter Mediterraneum IV in Cyprus. Bocconea 11:117–169Google Scholar
  91. Vogt R, Oberprieler C (2008) Chromosomes numbers VIII. More counts in Compositae. Willdenowia 38:497–519CrossRefGoogle Scholar
  92. Weddle C (1941) A species hybrid of Calendula, its F2 population and its tetraploid. Proc Am Soc Hort Sci 39:393–396Google Scholar
  93. Zohary M (1950) Evolutionary trends in the fruiting head of Compositae. Evolution 4:103–109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Sofia Nora
    • 1
  • Sílvia Castro
    • 2
  • João Loureiro
    • 2
  • Ana Carla Gonçalves
    • 3
  • Helena Oliveira
    • 3
  • Mariana Castro
    • 2
  • Conceição Santos
    • 3
  • Paulo Silveira
    • 3
    Email author
  1. 1.Department of Plant Biology and Ecology, Faculty of PharmacyUniversity of SevilleSevilleSpain
  2. 2.CFE-Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Biology and CESAMUniversity of AveiroAveiroPortugal

Personalised recommendations