Skip to main content
Log in

II. Exine development in Passiflora racemosa Brot.: post-tetrad period. Overlooked aspects of development

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript


Developmental stages during the post-tetrad period are examined in detail with TEM and SEM, with emphasis upon substructure. Our purpose was to find out whether the sequence of sporoderm developmental events gives additional evidence for our recent hypothesis on the underlying cause of exine ontogeny as a sequence of self-assembling micellar mesophases, initiated by genomically given physico-chemical parameters. Four different layers of the endexine are developed in the post-tetrad period. The first one is a layer of white line centered lamellae which appear as a demarcation line between ect- and endexine. The second layer is sponge-like and consists of “roots” of columellae and a layer between them. The third layer consists of basally disposed radially elongated granules which appear in the aperture sites only. The fourth layer emerges in interapertural sites only and is formed as stacks of uneven lamellae. Therefore, the sequence of substructural units in primexine is the next: white-lined lamellae, a layer of honeycombed substructure, globule-to-rod-like granules, stacks of wavy lamellae. These sequences correspond to the next four mesophases of self-assembling micelles: neat (=laminate) micelles, high-concentrated emulsion of sponge-like (=foam-like) substructure, spherical-to-cylindrical micelles, and laminate micelles with fenestrated laminae. Reiteration of the micellar mesophases, participating in endexine development, is observed during the post-tetrad period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others


  • Blackmore S (1990) Sporoderm homologies and morphogenesis in land plants, with a discussion on Echinops sphaerocephala (Compositae). Plant Syst Evol 5:1–12

    Article  Google Scholar 

  • Buchner R, Halbritter H (2000) Passiflora racemosa. In: Buchner R, Weber M (eds.) PalDat - a palynological database: Descriptions, illustrations, identification, and information retrieval. Accessed 16 Mar 2012

  • Dettke GA (2009) Anatomia comparada da antera de espécies de Passiflora L. (Passifloraceae) do Rio Grande do Sul. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul

  • Dickinson HG (1976) Common factors in exine deposition. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 67–89

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy. Angiosperms. Almquist and Wiksell, Stockholm

    Google Scholar 

  • Faegri K (1956) Recent trends in palynology. Bot Rev 22:639–664

    Article  Google Scholar 

  • Fridrichsberg DA (1995) Colloidal chemistry. Chemistry, St.-Petersburg

  • Gabarayeva NI (1996) Sporoderm development in Liriodendron chinense (Magnoliaceae): a probable role of the endoplasmic reticulum. Nordic J Bot 16:1–17

    Article  Google Scholar 

  • Gabarayeva NI, El-Ghazaly G (1997) Sporoderm development in Nymphaea mexicana (Nymphaeaceae). Plant Syst Evol 204:1–19

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2003) Comparative study of the pollen wall development in Illicium floridanum (Illiciaceae) and Schisandra chinensis (Schisandraceae). Taiwania 48:147–167

    Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2010) Sporoderm ontogeny in Chamaedorea microspadix (Arecaceae): self-assembly as the underlying cause of development. Grana 49:91–114

    Article  Google Scholar 

  • Gabarayeva NI, Grigorjeva VV (2011) Sporoderm development in Swida alba (Cornaceae), interpreted as a self-assembling colloidal system. Grana 50:81–101

    Article  Google Scholar 

  • Gabarayeva N, Grigorjeva V (2012) Sporoderm development and substructure in Magnolia sieboldii and other Magnoliaceae: an interpretation. Grana 51:119–147

    Article  Google Scholar 

  • Gabarayeva NI, Hemsley AR (2006) Merging concepts: the role of self-assembly in the development of pollen wall structure. Rev Palaeobot Palynol 138:121–139

    Article  Google Scholar 

  • Gabarayeva NI, Rowley JR (1994) Exine development in Nymphaea colorata (Nymphaeaceae). Nord J Bot 14:671–691

    Article  Google Scholar 

  • Gabarayeva N, Grigorjeva V, Polevova S (2011) Exine and tapetum development in Symphytum officinale (Boraginaceae). Exine substructure and its interpretation. Plant Syst Evol 296:101–120

    Article  Google Scholar 

  • Hemsley AR, Gabarayeva NI (2007) Exine development: the importance of looking through a colloid chemistry “window”. Plant Syst Evol 263:25–49

    Article  Google Scholar 

  • Kolattukudy PE, Köller W (1983) Fungal penetration of the first line defensive barriers of plants. In: Callow JA (ed) Biochemical plant pathology. Wiley, New York, pp 79–100

    Google Scholar 

  • Kurmann MH (1989) Pollen wall formation in Abies concolor and a discussion on wall layer homologies. Can J Bot 67:2489–2504

    Article  Google Scholar 

  • Kurmann MH (1990a) Development of pollen wall in Tsuga canadensis (Pinaceae). Nord J Bot 10:63–78

    Article  Google Scholar 

  • Kurmann MH (1990b) Exine formation in Cunninghamia lanceolata (Taxodiaceae). Rev Palaeobot Palynol 64:175–179

    Article  Google Scholar 

  • Larson DA (1966) On the significance on the detailed structure of Passiflora caerulea exines. Bot Gaz 127(1):40–48

    Article  Google Scholar 

  • Lugardon B (1987) Des spores des Ptéridophytes au pollen des Gymnospermes: données d’ultrastructure comparée. Bull Soc Bot France, Actualités Botaniques 134:57–66

    Google Scholar 

  • Lugardon B (1990) Pteridophyte sporogenesis: a survey of spore wall ontogeny and fine structure in a polyphyletic plant group. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic Press, London, pp 95–120

    Google Scholar 

  • Lugardon B (1995) Exine formation in Chamaecyparis lawsoniana (Cupressaceae) and a discussion on pteridophyte exospore and gymnosperm exine ontogeny. Rev Palaeobot Palynol 85:35–51

    Article  Google Scholar 

  • Nabli MA (1975) Mise en évidence de deux lamelles primordiales, ectexinique et endexinique, dans l’exine de quelques Labiatae. Comptes Rendus hebdomadaires des seances Série D 281:251–253

    Google Scholar 

  • Rowley JR (1987–1988) Substructure within the endexine, an interpretation. J. Palynology 23–24:29–42

    Google Scholar 

  • Rowley JR (1990) The fundamental structure of the pollen exine. Plant Syst Evol 5:13–29

    Article  Google Scholar 

  • Rowley JR, Claugher D (1991) Receptor-independent sporopollenin. Botanica Acta 104:316–323

    Google Scholar 

  • Scott RJ (1994) Pollen exine—the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead MA (eds) Society for experimental biology seminar series 55: molecular and cellular aspects of plant reproduction. Cambridge Univ Press, Cambridge, pp 49–81

    Chapter  Google Scholar 

  • Taylor ML, Osborn JM (2006) Pollen ontogeny in Brasenia (Cabombaceae, Nymphaeales). Am J Bot 93:344–356

    Article  PubMed  Google Scholar 

  • Vinckier S, Smets E (2005) A histological study of microsporogenesis in Tarenna gracilipes (Rubiaceae). Grana 44:30–44

    Article  Google Scholar 

  • Weber M, Ulrich S (2010) The endexine: a frequently overlooked pollen wall layer and simple method for detection. Grana 49:83–90

    Article  Google Scholar 

Download references


This work was supported by grant RFBR No. 11-04-00462a to Nina Gabarayeva. We thank our engineer Peter Tzinman for assistance with the Hitachi H-600 TEM. Special thanks to Bruce Sampson for English corrections in the text.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nina Gabarayeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabarayeva, N., Grigorjeva, V. & Kosenko, Y. II. Exine development in Passiflora racemosa Brot.: post-tetrad period. Overlooked aspects of development. Plant Syst Evol 299, 1037–1055 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: