Battistuzzi FU, Filipski A, Hedges SB, Kumar S (2010) Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. Molec Biol Evol 27:1289–1300
PubMed
Article
CAS
Google Scholar
Benton MJ (1995) Diversification and extinction in the history of life. Science 268:52–58
PubMed
Article
CAS
Google Scholar
Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S (eds) Timetree of Life. University Press, Oxford, pp 35–86
Google Scholar
Clarke JT, Warnock RCM, Donoghue PCJ (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301
PubMed
Article
Google Scholar
Cooper EE, Henwood MJ, Brown EA (2012) Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol J Linn Soc 107:425–441
Article
Google Scholar
Crandall-Stotler BJ, Forrest LL, Stotler RE (2005) Evolutionary trends in the simple thalloid liverworts. Taxon 54:299–316
Article
Google Scholar
Crandall-Stotler B, Stotler RE, Long DG (2009) Phylogeny and classification of the Marchantiophyta. Edinburgh J Bot 66:155–198
Article
Google Scholar
Crisp MD, Cook LG (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol 192:997–1009
PubMed
Article
CAS
Google Scholar
Cusimano N, Stadler T, Renner SS (2012) A new method for handling missing species in diversification analysis applicable to randomly or non-randomly sampled phylogenies. Syst Biol 61:785–792
PubMed
Article
Google Scholar
de Roo RT, Hedderson TA, Söderström L (2007) Molecular insights into the phylogeny of the leafy liverwort family Lophoziaceae Cavers. Taxon 56:301–314
Google Scholar
Devos N, Vanderpoorten A (2009) Range disjunctions, speciation, and morphological transformation rates in the liverwort genus Leptoscyphus. Evolution 63:779–791
PubMed
Article
Google Scholar
Donoghue PCJ, Benton MJ (2007) Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol 22:424–431
PubMed
Article
Google Scholar
Dornberg A, Beaulie JM, Oliver JC, Near TJ (2011) Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Syst Biol 60:519–527
Article
Google Scholar
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214 (http://beast.bio.ed.ac.uk)
Drummond AJ, Ho SY, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88
PubMed
Article
Google Scholar
Eiserhardt WL, Rohwer JG, Russell SJ, Yesliyurt JC, Schneider H (2011) Evidence for radiations of cheilanthoid ferns in the Greater Cape Floristic region. Taxon 60:1269–1283
Google Scholar
Feldberg K, Hentschel J, Bombosch A, Long DG, Váňa J, Heinrichs J (2009) Transfer of Gottschelia grollei, G. patoniae and Scaphophyllum speciosum to Solenostoma based on chloroplast DNA rbcL sequences. Pl Syst Evol 280:243–250
Article
CAS
Google Scholar
Feldberg K, Váňa J, Long DG, Shaw AJ, Hentschel J, Heinrichs J (2010) A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. Molec Phylogen Evol 55:293–304
Article
CAS
Google Scholar
Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V (2011) Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol Biol 11:341
PubMed
Article
Google Scholar
Forrest LL, Crandall-Stotler BJ (2004) A phylogeny of the simple thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. Monogr Syst Bot Missouri Bot Gard 98:119–140
Google Scholar
Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109:303–334
Article
CAS
Google Scholar
Frahm J-P (2006) Neue Moosfunde aus Baltischem Bernstein. Limprichtia 29:119–129
Google Scholar
Gernandt DS, Magallon S, López GG, Flores OZ, Willyard A, Liston A (2008) Use of simultaneous analysis to guide fossil-based callibrations of Pinaceae phylogeny. Int J Pl Sci 169:1086–1099
Article
Google Scholar
Gradstein SR (1993) New fossil Hepaticae preserved in amber of the Dominican Republic. Nova Hedwigia 57:353–374
Google Scholar
Grimaldi DA (1996) Amber. Window to the past. Abrams, New York
Google Scholar
Grolle R (1983) Leucolejeunea antiqua n. sp., das erste Lebermoos aus Dominikanischem Bernstein. Stuttgarter Beitr Naturk, B 96:1–9
Google Scholar
Grolle R (1985) Monograph of Frullania in Baltic amber. Prace Muz. Ziemi (Warsaw) 37:87–100
Google Scholar
Grolle R (1993) Bryopteris bispinosa spec. nov. (Lejeuneaceae), ein weiteres Lebermoos in dominikanischem Bernstein. J Hattori Bot Lab 74:71–76
Google Scholar
Grolle R, Meister K (2004a) The liverworts in Baltic and Bitterfeld amber. Weissdorn, Jena
Google Scholar
Grolle R, Meister K (2004b) Lophozia kutscheri, a new hepatic (Jungermanniales) in Bitterfeld amber from central Germany. Bryologist 107:79–81
Article
Google Scholar
Grolle R, Schmidt A (2001) A fossil Scapania (Hepaticae) with perianth and capsule in Bitterfeld amber (Eocene) from Germany. Bryologist 104:362–366
Article
Google Scholar
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98
CAS
Google Scholar
Hartmann FA, Wilson R, Gradstein SR, Schneider H, Heinrichs J (2006) Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae). Int J Pl Sci 167:1205–1214
Article
CAS
Google Scholar
Hedges SB, Kumar S (2009) Discovering the Timetree of Life. In: Hedges SB, Kumar S (eds) Timetree of Life. University Press, Oxford, pp 3–18
Google Scholar
Hedman MH (2010) Constraints on clade ages from fossil outgroups. Paleobiol 36:16–31
Article
Google Scholar
Heinrichs J, Schmidt AR (2010) An inclusion of Frullania subgen. Diastaloba s.l. (Frullaniaceae, Porellales) in Dominican amber. Trop Bryol 31:142–156
Google Scholar
Heinrichs J, Hentschel J, Wilson R, Feldberg K, Schneider H (2007) Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 56:31–44
Google Scholar
Heinrichs J, Hentschel J, Feldberg K, Bombosch A, Schneider H (2009a) Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J Syst Evol 47:497–508
Article
Google Scholar
Heinrichs J, Klugmann F, Hentschel J, Schneider H (2009b) DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, Marchesinia brachiata (Lejeuneaceae, Porellales). Molec Phylogen Evol 53:113–121
Article
CAS
Google Scholar
Heinrichs J, Reiner-Drehwald ME, Feldberg K, Grimaldi DA, Nascimbene PC, von Konrat M, Schmidt AR (2011) Kaolakia borealis nov. gen. et sp. (Porellales, Jungermanniopsida): a leafy liverwort from the Cretaceous of Alaska. Rev Palaeobot Palynol 165:235–240
Article
Google Scholar
Heinrichs J, Bombosch A, Feldberg K, Kreier HP, Hentschel J, Eckstein J, Long D, Zhu R-L, Schäfer-Verwimp A, Schmidt AR, Shaw B, Shaw AJ, Váňa J (2012a) A phylogeny of the northern temperate leafy liverwort genus Scapania (Scapaniaceae, Jungermanniales). Molec Phylogen Evol 62:973–985
Article
Google Scholar
Heinrichs J, von Konrat M, Grabenhorst H, Schmidt AR (2012b) The sporophyte of the Paleogene liverwort Frullania varians Caspary. Fossil Rec 15:115–120
Article
Google Scholar
Heinrichs J, Reiner-Drehwald ME, Feldberg K, von Konrat M, Hentschel J, Váňa J, Grimaldi DA, Nascimbene PC, Schmidt AR (2012c) The leafy liverwort Frullania (Jungermanniopsida) in the Cretaceous amber forest of Myanmar. Rev Palaeobot Palynol 169:21–28
Article
Google Scholar
Heled J, Drummond AJ (2012) Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol 61:138–149
PubMed
Article
Google Scholar
Hentschel J, Wilson R, Burghardt M, Zündorf H-J, Schneider H, Heinrichs J (2006) Reinstatement of Lophocoleaceae (Jungermanniopsida) based on chloroplast gene rbcL data: exploring the importance of female involucres for the systematics of Jungermanniales. Pl Syst Evol 258:211–226
Article
CAS
Google Scholar
He-Nygrén X, Juslén A, Ahonen I, Glenny D, Piippo S (2006) Illuminating the evolutionary history of liverworts (Marchantiophyta)—towards a natural classification. Cladistics 22:1–31
Article
Google Scholar
Hepperle D (2004) SeqAssem©. A sequence analysis tool, contig assembler and trace data visualization tool for molecular sequences. Win32-Version. Distributed by the author via: http://www.sequentix.de
Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 38:409–414
Google Scholar
Inoue J, Donoghue PCJ, Yang Z (2010) The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 59:74–89
PubMed
Article
Google Scholar
Iturralde-Vincent MA, MacPhee RDE (1996) Age and paleogeographical origin of Dominican amber. Science 273:1850–1852
Article
Google Scholar
Jacques FMB, Gallut C, Vignes-Lebbe R, Bagils RZI (2007) Resolving phylogenetic reconstruction in Menispermaceae (Ranunculales) using fossils and a novel statistical test. Taxon 56:379–392
Google Scholar
Janssen T, Bystriakova N, Rakotondrainibe F, Coomes D, Labat J-N, Schneider H (2008) Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution 62:1876–1889
PubMed
Article
Google Scholar
Kenrick P, Wellman CH, Schneider H, Edgecombe GD (2012) A timeline for terrestrialisation—consequences for the carbon cycle in the Palaeozoic. Philos Trans, Ser B 376:519–536
Article
Google Scholar
Krassilov VA, Schuster RM (1984) Paleozoic and Mesozoic fossils. In: Schuster RM (ed) New manual of bryology. The Hattori Botanical Laboratory, Nichinan, pp 1172–1193
Google Scholar
Lidgard S, Crane PR (1988) Quantitative analyses of the early angiosperm radiation. Nature 331:344–346
Article
Google Scholar
Lloyd GT, Young JR, Smith AB (2012) Taxonomic structure of the fossil record is shaped by sampling bias. Syst Biol 61:80–89
PubMed
Article
Google Scholar
Lukoschek V, Keogh JS, Avise JC (2012) Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol 61:22–43
PubMed
Article
Google Scholar
Lupia R, Lidgard S, Crane PR (1999) Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiol 25:303–340
Google Scholar
Magallon SA (2010) Using fossils to break long branches in molecular dating: a comparison of relaxed clocks allied to the origin of angiosperms. Syst Biol 59:384–399
PubMed
Article
Google Scholar
Marshall CR (2008) A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Amer Naturalist 171:726–742
Article
Google Scholar
McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL (2010) Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution 65:184–202
Article
Google Scholar
Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S (2011) Recent synchronous radiation of a living fossil. Science 334:796–799
PubMed
Article
CAS
Google Scholar
Near TJ, Sanderson MJ (2004) Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philos Trans, Ser B 359:1477–1483
Article
Google Scholar
Niklas KJ, Tiffney BH, Knoll AH (1983) Patterns in vascular land plant diversification. Nature 303:614–616
Article
Google Scholar
Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ (2012) Best practices for justifying fossil calibrations. Syst Biol 61:346–359
PubMed
Article
Google Scholar
Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256 (http://darwin.uvigo.es/software/jmodeltest.html)
Google Scholar
Pyron RA (2010) A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 59:185–195
PubMed
Article
CAS
Google Scholar
Qiu Y-L, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516
PubMed
Article
CAS
Google Scholar
Rabovsky DL (2010) Extintion rates should not be estimated from molecular phylogenies. Evolution 64:1816–1824
Article
Google Scholar
Rambaut A (2006–2009) FigTree. Tree figure drawing tool version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh (http://tree.bio.ed.ac.uk/software/figtree/)
Rambaut A, Drummond AJ (2003–2009) Tracer. MCMC Trace analysis tool version v1.5.0 (http://tree.bio.ed.ac.uk/software/tracer/)
Raven P, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Missouri Bot Gard 61:539–673
Article
Google Scholar
Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Pl Sci 10:550–558
Article
CAS
Google Scholar
Rutschmann F, Eriksson T, Abu Salim K, Conti E (2007) Assessing calibration uncertainty in molecular dating: the assignments of fossils to alternative calibration points. Syst Biol 56:591–608
PubMed
Article
CAS
Google Scholar
Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ, Lee DM, Murphy DJ, Sniderman JMK, Udovicic F (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61:289–313
PubMed
Article
Google Scholar
Schneider H (2007) Plant morphology as the cornerstone to the integration of fossils and extant taxa in phylogenetic analyses. Sp Phyl Evol 1:65–71
Google Scholar
Schneider H, Kenrick P (2001) An early Cretaceous root-climbing epiphyte (Lindsaeaceae) and its significance for calibrating the diversification of polypodiaceous ferns. Rev Palaeobot Palynol 115:33–41
PubMed
Article
Google Scholar
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557
PubMed
Article
CAS
Google Scholar
Schneider H, Smith AR, Pryer KM (2009) Is morphology really at odds with molecules in estimating fern phylogeny. Syst Bot 34:455–475
Article
Google Scholar
Schneider H, Janssen T, Bystriakova N, Heinrichs J, Hennequin S, Rakotondrainibe F (2010a) Rapid radiations and neoendemism in the Madagascan biodiversity hotspot. In: Glaubrecht M (ed) Evolution in action: case studies in adaptive radiation, speciation, and the origin of biodiversity. Springer, Berlin, pp 3–15
Google Scholar
Schneider H, Kreier H-P, Janssen T, Otto E, Muth H, Heinrichs J (2010b) Key innovations versus key opportunities; identifying causes of rapid radiations in derived ferns. In: Glaubrecht M (ed) Evolution in action: case studies in adaptive radiation, speciation, and the origin of biodiversity. Springer, Berlin, pp 61–76
Google Scholar
Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci USA 27:11200–11205
Article
Google Scholar
Shaw AJ, Devos N, Cox CJ, Boles SB, Shaw B, Buchanan AM, Cave L, Seppelt R (2010) Peatmoss (Sphagnum) diversification associated with Miocene northern hemisphere climatic cooling? Molec Phylogen Evol 55:1139–1145
Article
CAS
Google Scholar
Smith AB (2001) Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos Trans, Ser B 356:351–367
Article
CAS
Google Scholar
Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ (2011) Understanding angiosperm diversification using small and large phylogenetic trees. Amer J Bot 98:404–414
Article
Google Scholar
Standke G (1998) Die Tertiärprofile der Samländischen Bernsteinküste bei Rauschen. Schriftenreihe Geowiss 7:93–133
Google Scholar
Steenbock CM, Stockey RA, Beard G, Tomescu AMF (2011) A new family of leafy liverworts from the middle Eocene of Vancouver Island, British Columbia, Canada. Amer J Bot 98:998–1006
Article
Google Scholar
Tarver JE, Donoghue PCJ (2011) The trouble with topology: phylogenies without fossils provide a revisionist perspective of evolutionary history in topological analyses of diversity. Syst Biol 60:700–712
PubMed
Article
Google Scholar
Taylor TN, Taylor EL, Krings M (2009) Paleobotany: the biology and evolution of fossil plants, 2nd edn. Academic Press, Boston
Google Scholar
Vilnet AA, Konstantinova NA, Troitsky AV (2010) Molecular insight on phylogeny and systematics of the Lophoziaceae, Scapaniaceae, Gymnomitriaceae and Jungermanniaceae. Arctoa 19:31–50
Google Scholar
Wagner PJ (2000) Exhaustion of morphological character states among fossil taxa. Evolution 54:365–386
PubMed
CAS
Google Scholar
Wang L, Schneider H, Zhang XC, Xiang QP (2012) The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimes. BMC Plant Biol 12:210
PubMed
Article
Google Scholar
Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang ZH, Tavaré S (2011) Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 60:16–31
PubMed
Article
CAS
Google Scholar
Wilson R, Heinrichs J, Hentschel J, Gradstein SR, Schneider H (2007) Steady diversification of derived liverworts under Tertiary climatic fluctuations. Biol Lett 3:566–569
PubMed
Article
Google Scholar
Yang XJ, Wu XW (2010) Sinolejeunea yimaensis gen. et. sp. nov. (Hepaticae) from the Middle-Jurassic Yima formation in Henan province of China. Sci China, Earth Sci 54:228–232
Article
Google Scholar
Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. GARLI version 0.96 beta available online at http://www.nescent.org/informatics/