Skip to main content

Genetic diversity, structure, and patterns of differentiation in the genus Vitis

Abstract

Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the controversial taxa within the genus Vitis. The distance- and model-based analyses were used to examine the phylogenetic structure within the genus Vitis using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. The results closely matched the current classification, but some discrepancies in the identity of taxa at the specific and subspecific levels were still evident. The East Asia and the North American Vitis exhibited strong divergence and each group showed further differentiation into several subgroups with North American subgroups roughly matching the described series. The model based cluster analysis indicated 14 clusters as optimum to explain the genetic structure within the genus Vitis with most clusters containing a moderate frequency of admixed genotypes suggesting interspecific gene flow within the subgenus Vitis. Hierarchical partitioning of molecular variation indicated that a significant amount of the total variation (~74 % and ~69 % for SSRs and AFLPs, respectively) is accounted for by intraspecific variation as compared to the levels due to genetic differentiation among species within series (~17 % and ~20 % for SSRs and AFLPs, respectively) and among series within the genus Vitis (~9 % and ~10 % for SSRs and AFLPs, respectively). Overall, Vitis possesses mild genetic structure characterized by reticulation and incomplete lineage sorting of ancestral polymorphisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Sys Biol 56:477–484

    Article  CAS  Google Scholar 

  • Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA, Arnold C, Ergul A, Soylemezoglu G, Uzun HI, Cabello F, Ibanez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714

    Article  PubMed  CAS  Google Scholar 

  • Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15

    Article  Google Scholar 

  • Bailey LH (1934) The species of grapes peculiar to North America. Gentes Herbarum 3:151–244

    Google Scholar 

  • Barrett HC, Carmer SG, Rhodes AM (1969) A taximetric study of interspecific variation in Vitis. Vitis 8:177–187

    Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature (London) 368:455–457

    Article  CAS  Google Scholar 

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Amer J Enol Viticulture 50:243–246

    CAS  Google Scholar 

  • Brizicky GK (1965) The genera of Vitaceae in the southeastern United States. J Arnold Arbor 46:48–67

    Google Scholar 

  • Bulgin NL, Gibbs HL, Vickery P, Baker AJ (2003) Ancestral polymorphisms in genetic markers obscure detection of evolutionarily distinct populations in the endangered Florida grasshopper sparrow (Ammodramus savannarum floridanus). Mol Ecol 12:831–844

    Article  PubMed  CAS  Google Scholar 

  • Caballero A, Quesada H, Rolán-Alvarez E (2008) Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179:539–554

    Article  PubMed  Google Scholar 

  • Charlesworth D (2010) Don’t forget the ancestral polymorphisms. Heredity 105:509–510

    Article  PubMed  CAS  Google Scholar 

  • Chen I (2009) History of Vitaceae inferred from morphology-based phylogeny and the fossil record of seeds. University of Florida, Gainesville

    Google Scholar 

  • Chen I, Manchester SR (2007) Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Amer J Bot 94:1534–1553

    Article  Google Scholar 

  • Chen ZD, Ren H, Wen J (2007) Vitaceae. In: Wu Z-Y, Hong D-Y, Raven P (eds) Flora of China, Vol. 12, Science Press and Missouri Botanical Garden Press, Beijing, China and St. Louis, pp 210–222

  • Comeaux BL (1984) Taxonomic studies on certain native grapes of eastern North Carolina. North Carolina State University, Raleigh

    Google Scholar 

  • De Lattin G (1939) Über den Ursprung und die Verbreitung der Reben. Der Züchter 11:217–225

    Google Scholar 

  • Di Vecchi-Staraz M, Laucou V, Bruno G, Lacombe T, Gerber S, Bourse T, Boselli M, This P (2009) Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp silvestris. J Heredity 100:66–75

    Article  Google Scholar 

  • Dopazo J (1994) Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J Mol Evol 38:300–304

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Galet P (1967) Recherches sur les methodes d’identification et de classification des Vitacees des zones temperees. University of Montpellier, Montpellier

    Google Scholar 

  • Galet P (2000) General viticulture. Oenoplurimedia, France

    Google Scholar 

  • Garcia-Pereira MJ, Caballero A, Quesada H (2010) Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets. Mol Biol Evol 27:988–1000

    Article  PubMed  CAS  Google Scholar 

  • Hu HH, Chaney RW (1940) A Miocene flora from Shantung Province. Chin. I, II. Palaeontol Sinica N S A 1:1–141

    Google Scholar 

  • Ingrouille MJ, Chase MW, Fay MF, Bowman D, van der Bank M, Bruijn ADE (2002) Systematics of Vitaceae from the viewpoint of plastid rbcL DNA sequence data. Bot Linnean Soc 138:421–432

    Article  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee S-B, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32

    Article  PubMed  Google Scholar 

  • Kirchheimer F (1939) Rhamnales. I. Vitaceae Fossilium catalogues, Vol. 2 (Plantae). Jongmans Faller, Neubrandenburg, pp 2–153

  • Klein J, Sato A, Nagl S, O’Huigin C (1998) Molecular trans-species polymorphism. Annu Rev Ecol Sys 29:1–21

    Article  Google Scholar 

  • Koopman WJM (2005) Phylogenetic signal in AFLP data sets. Syst Biol 54:197–217

    Article  PubMed  Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2009) An AFLP clock for the absolute dating of shallow-time evolutionary history based on the intraspecific divergence of southwestern European alpine plant species. Mol Ecol 18:697–708

    Article  PubMed  Google Scholar 

  • Levadoux L (1956) Les populations sauvages et cultivées de Vitis. Annales de Amélioration des Plantes 6:59–117

    Google Scholar 

  • Levadoux L (1968) Essai de regroupement phylogénique des vignes varies d’ Amérique. Revue de Horticulture et de Viticulture 6:31–128

    Google Scholar 

  • Levadoux L, Boubals D, Rives M (1962) The genus Vitis and its species (English and German summ.). Ann Amelioration Plantes 12:19–44

    Google Scholar 

  • McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton Univ Press, Princeton

    Google Scholar 

  • Moore MO (1990) A systematic study of eastern North American (Vitaceae) north of Mexico. University of Georgia, Dissertation

    Google Scholar 

  • Moore MO (1991) Classification and systematics of eastern North American Vitis L. (Vitaceae) north of Mexico. SIDA Contributions to Bot 14:339–367

    Google Scholar 

  • Moore MO, Giannasi DE (1994) Foliar flavonoids of eastern North American Vitis (Vitaceae) north of Mexico. Plant Sys Evol 193:21–36

    Article  CAS  Google Scholar 

  • Muir G, Schloetterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 14:549–561

    Article  PubMed  CAS  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Munson TV (1909) Foundations of American grape culture. T.V. Munson and Son, Texas

    Book  Google Scholar 

  • Negrul AM (1938) Evolution of cultivated forms of grapes. Compt Rend [Doklady] Acad Sci Urss 18:585–588

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Peros J-P, Berger G, Portemont A, Boursiquot J-M, Lacombe T (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeography 38:471–486

    Article  Google Scholar 

  • Planchon JE (1887) Monographie des ampélidées vrais. In: de Candolle AFPP, de Candolle C (eds) Monographiae phanaerogamarum, vol. 5(2), Masson, Paris, pp 305–368

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ren H, Lu L-M, Soejima A, Luke Q, Zhang D-X, Chen Z-D, Wen J (2011) Phylogenetic analysis of the grape family (Vitaceae) based on the noncoding plastid trnC-petN, trnH-psbA, and trnL-F sequences. Taxon 60:629–637

    Google Scholar 

  • Renfrew JM (1973) Paleoethnobotany. The prehistoric food plants of the near east and europe. Methuen, London

    Google Scholar 

  • Richard M, Thorpe RS (2001) Can microsatellites be used to infer phylogenies? Evidence from population affinities of the western Canary Island lizard (Gallotia galloti). Mol Phylogenet Evol 20:351–360

    Article  PubMed  CAS  Google Scholar 

  • Rivera Nunez D, Walker MJ (1989) A review of paleobotanical findings of early Vitis in the Mediterranean and of the origins of cultivated grapevines with special reference to new pointers to prehistoric exploitation in the western Mediterranean. Rev of Palaeobot Palyn 61:205–238

    Article  Google Scholar 

  • Schaefer H (1982) Failure of distinguishing Vitis species and hybrids by protein and isoenzyme analysis of roots. Biochem Sys Ecol 10:349

    Article  Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Gloessl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practices of numerical classification. W.H. Freeman, San Francisco

    Google Scholar 

  • Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Amer J Bot 93:278–287

    Article  CAS  Google Scholar 

  • Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990

    CAS  Google Scholar 

  • Troendle D, Schroeder S, Kassemeyer H–H, Kiefer C, Koch MA, Nick P (2010) Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. Amer J Bot 97:1168–1178

    Article  CAS  Google Scholar 

  • Turner C (1968) A note on the occurrence of Vitis and other new plant records from the Pleistocene deposits at Hoxne, Suffolk. New Phytol 67:333–334

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vergilino R, Markova S, Ventura M, Manca M, Dufresne F (2011) Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mol Ecol 20:1191–1207

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Schwaninger H, Li D, Simon CJ, Wang Y, Zhang C (2008a) A review of taxonomic research on Chinese wild grapes. Vitis 47:81–88

    Google Scholar 

  • Wan Y, Schwaninger H, Simon CJ, Wang Y, He P (2008b) The ecogeographic distribution of wild grape germplasm in China. Vitis 47:77–80

    Google Scholar 

  • Wen J (2007) Vitaceae. In: Kubitzki K (ed) Families and genera of vascular plants, vol 9. Springer, Berlin, pp 467–479

    Google Scholar 

  • Willyard A, Cronn R, Liston A (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Mol Phylo Evol 52:498–511

    Article  CAS  Google Scholar 

  • Zecca G, Abbott JR, Sun W-B, Spada A, Sala F, Grassi F (2012) The timing and the mode of evolution of wild grapes (Vitis). Mol Phylogenet Evol 62:736–747

    Article  PubMed  Google Scholar 

  • Zhukovsky PM (1965) Main gene centers of cultivated plants and their wild relations within territory of the USSR. Euphytica 14:177–188

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the grant 5306-21000-018-00D from the U.S. Department of Agriculture, Agricultural Research Service. We are grateful to Dr. Peter Cousins for providing the plant samples of some of the grape genotypes from his rootstock breeding program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aradhya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 68 kb)

Supplementary material 2 (PDF 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aradhya, M., Wang, Y., Walker, M.A. et al. Genetic diversity, structure, and patterns of differentiation in the genus Vitis . Plant Syst Evol 299, 317–330 (2013). https://doi.org/10.1007/s00606-012-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0723-4

Keywords