Skip to main content
Log in

Nuclear DNA content variation among perennial taxa of the genus Cyanus (Asteraceae) in Central Europe and adjacent areas

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genome size of 265 plants and the GC content of 126 plants from 63 populations of the Cyanus triumfetti and Cyanus montanus groups, collected across the Carpathians, Pannonia, Bohemian Massif, and Western and Dinaric Alps were determined by PI and DAPI flow cytometry. Variation of the nuclear DNA content among homoploid species, and intraspecific and interpopulation variation were confirmed in simultaneous analyses. The 2C-value at the diploid level (the C. triumfetti group) varied from 2.53 for Cyanus dominii subsp. sokolensis to 3.06 pg for C. triumfetti s.s. (1.21-fold range). At the tetraploid level (the C. montanus group), the 2C-value varied from 5.19 for Cyanus mollis to 5.84 pg for C. montanus (1.13-fold range). High intraspecific and interpopulation variation in the amount of nuclear DNA in the C. triumfetti group correlates with the extensive morphological variation found in this group. Significant between-species differences in genome size indicate that this attribute may be used as a supportive taxonomic marker for both of the groups studied. The GC content varied by 2.93 %, from 39.46 % for “Cyanus axillaris” to 40.61 % for Cyanus adscendens; this character is of no value for taxonomic purposes. Genome size of the studied populations is significantly higher in southern parts of the distribution area and at higher elevations. Plants with smaller genomes tend to occur in dry areas at low altitudes with high diurnal and annual temperature oscillations. The GC content of the populations studied is significantly correlated with longitude, increasing from east to west; and plants with GC-rich genomes are concentrated in the coldest areas with low minimum temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR (2008) Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Pl Syst Evol 276:9–19

    Article  CAS  Google Scholar 

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911

    Article  PubMed  CAS  Google Scholar 

  • Baltisberger M (1991) Cytological investigations of some Greek plants. Fl Medit 1:157–173

    Google Scholar 

  • Bancheva ST (1998) Reports (970–976). In: Kamari G, Felber F, Garbari F (eds) Mediterranean chromosome number reports 8. Fl Medit 8:273–280

  • Bancheva ST, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Pl Syst Evol 257:95–117

    Article  CAS  Google Scholar 

  • Bancheva ST, Raimondo FM (2003) Biosystematic studies of seven Balkan species from genus Cyanus (Compositae). Bocconea 16:507–527

    Google Scholar 

  • Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    Article  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (Release 5.0. December 2010). http://data.kew.org/cvalues. Accessed 22 Feb 2011

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Borhidi I (1957) Centaurea achtarovii Urumoff dans les Carpathes orientaux. Annotations sur le groupe Centaurea triumfettii All. Ann Hist-Nat Mus Natl Hung 7:219–225

    Google Scholar 

  • Boršić I, Susanna A, Bancheva S, Garcia-Jacas N (2011) Centaurea sect. Cyanus: nuclear phylogeny, biogeography and life-form evolution. J Plant Sci 172:238–249

    Article  Google Scholar 

  • Bureš P, Wang YF, Horová L, Suda J (2004) Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363

    Article  PubMed  Google Scholar 

  • Ciocârlan V (2000) Flora ilustrată a României. Editura Ceres, Bucureşti

    Google Scholar 

  • Cosendai A-C, Hörandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470

    Article  PubMed  Google Scholar 

  • Cosendai A-C, Rodewald J, Hörandl E (2011) Origin and distribution of autopolyploids via apomixis in the alpine plant species Ranunculus kuepferi (Ranunculaceae). Taxon 60:355–364

    Google Scholar 

  • Czerepanov SK (1963) Podrod Cyanus. In: Bobrov EG, Czerepanov SK (eds) Flora SSSR 28. Botanicheskii institut V.L. Komarova Akademii Nauk SSSR, Leningrad, pp 387–418

    Google Scholar 

  • Damboldt O, Matthäs C (1975) Chromosome numbers of some Mediterranean and C. European Centaurea species (Asteraceae). Pl Syst Evol 123:107–115

    Article  Google Scholar 

  • Dihoru G, Negrean G (2009) Cartea roşie a plantelor vasculare din România. Editura Academiei Române, Bucureşti

    Google Scholar 

  • Dobeš C, Vitek E (2000) Documented chromosome number checklist of Austrian vascular plants. Verlag des Naturhistorischen Museums Wien, Wien

    Google Scholar 

  • Dobrochayeva DM (1949) Voloshky URSR, ikh poshyrennya ta istoriya rozvytku. Bot Zhurn 6:63–77

    Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Dostál J (1976) Centaurea L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 4. Cambridge University Press, Cambridge, pp 254–301

    Google Scholar 

  • Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Ekrt L, Holubová R, Trávníček P, Suda J (2010) Species boundaries and frequency of hybridization in the Dryopteris carthusiana (Dryopteridaceae) complex: a taxonomic puzzle resolved using genome size data. Am J Bot 97:1208–1219

    Article  PubMed  Google Scholar 

  • Garcia-Jacas N, Susanna A, Vilatersana R, Guara M (1998) New chromosome counts in the subtribe Centaureinae (Asteraceae, Cardueae) from West Asia. II. Bot J Linn Soc 128:403–412

    Article  Google Scholar 

  • Garcia-Jacas N, Susanna A, Garnatje T, Vilatersana R (2001) Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloropast DNA analysis. Ann Bot 87:503–515

    Article  CAS  Google Scholar 

  • Garnatje T, Garcia S, Vilatersana R, Vallès J (2006) Genome size variation in the genus Carthamus L. (Asteraceae, Cardueae): systematic implications and additive changes during allopolyploidization in hybrid taxa. Ann Bot 97:461–467

    Article  PubMed  CAS  Google Scholar 

  • Garnatje T, Garcia S, Canela MÁ (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographical implication. Pl Syst Evol 264:117–134

    Article  CAS  Google Scholar 

  • Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorimetry useful for calculating genomic base composition. Cytometry 14:618–626

    Article  PubMed  CAS  Google Scholar 

  • Gonnet J-F (1992) Flavonoid glycoside variation in wild specimens of Centaurea montana (Compositae). Biochem Syst Ecol 20:149–161

    Article  CAS  Google Scholar 

  • Gonnet J-F (1993) Flavonoid glycoside variation in wild specimens of Centaurea triumfetti (Compositae) and comments on its relationships with Centaurea montana based on flavonoid fingerprints. Biochem Syst Ecol 21:389–396

    Article  CAS  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Greuter W (2006–2009) Compositae (pro parte majore). In: Greuter W, Raab-Straube E von (eds) Compositae. Euro + Med Plantbase—the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed. Accessed 22 Feb 2011

  • Grime JP, Shacklock JML, Band SR (1985) Nuclear DNA amounts, shoot phenology and species coexistence in a limestone grassland community. New Phytol 100:435–445

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hollingsworth PM, Gornall RJ, Bailey JP (1992) Contributions to a cytological catalogue of the British and Irish flora, 2. Watsonia 19:134–137

    Google Scholar 

  • Jones N, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Krähenbühl M, Küpfer P (1992) Reports (92–97). In: Kamari G, Felber F, Garbari F (eds) Mediterranean chromosome number reports—2. Fl Medit 2:255–258

  • Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon Press, Oxford

    Google Scholar 

  • Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96

    Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its use: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 153–156

    Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-value provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl. 1):85–94

    Article  CAS  Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (1998) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814

    Article  PubMed  CAS  Google Scholar 

  • Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma L. (Zingiberaceae). Ann Bot 100:500–526

    Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

    Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907–919

    Article  PubMed  CAS  Google Scholar 

  • Lipper W, Heubl GR (1988) Chromosomenzahlen von Pflanzen aus Bayern und angrenzenden Gebieten. Ber Bayer Bot Ges 59:13–22

    Google Scholar 

  • Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21

    Google Scholar 

  • MacGillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Funct Ecol 9:320–325

    Article  Google Scholar 

  • Marhold K, Mártonfi P, Mereďa jun P, Mráz P (eds) (2007) Chromosome number survey of the ferns and flowering plants of Slovakia. Veda, Bratislava

    Google Scholar 

  • Marhold K, Kudoh H, Pak J-H, Watanabe K, Španiel S, Lihová J (2010) Cytotype diversity and genome variation in eastern Asia polyploidy Cardamine (Brassicaceae) species. Ann Bot 105:249–264

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Barow M (2007) DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 177–215

    Google Scholar 

  • Meriç Ç, Arda H, Güler N, Sergun D (2010) Chromosome number and nuclear DNA content of Centaurea kilaea (Asteraceae), an endemic species from Turkey. Phytol Balcan 16:79–84

    Google Scholar 

  • Millionová H (2000) Taxonomická studie vytrvalých druhů rodu Cyanus Mill. v České republice. MSc. thesis, depon. in PřF UK Praha

  • Mosyakin SL, Fedoronchuk MM (1999) Vascular plants of Ukraine: a nomenclatural checklist. National Academy of Sciences of Ukraine, M. G. Kholodny Institute of Botany, Kiev

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    Article  PubMed  CAS  Google Scholar 

  • Olšavská K, Perný M (2009) Cyanus graminifolius. In: Marhold K (ed) IAPT/IOPB chromosome data 7. Taxon 58:181–183

  • Olšavská K, Perný M, Hodálová I (2008) Morphological and karyological variation of the Cyanus triumfettii group (Asteraceae) in the Western Carpathians. In: Anonymous (ed) Book of Abstracts, Xth Symposium of the International Organisation of Plant Biosystematists, 2–4 July, Vysoké Tatry, Slovakia, p 86

  • Olšavská K, Perný M, Mártonfi P, Hodálová I (2009) Cyanus triumfettii subsp. triumfettii (Compositae) does not occur in the western Carpathians and adjacent parts of Pannonia: karyological and morphological evidence. Nord J Bot 27:21–36

    Google Scholar 

  • Olšavská K, Perný M, Kučera J, Hodálová I (2011) Biosystematic study of the Cyanus triumfetti group in Central Europe. Preslia 83:59–98

    Google Scholar 

  • Oprea A (2005) Lista critică a plantelor vasculare din România. Editura Universitatii Alexandru Ioan Cuza, Iaşi

    Google Scholar 

  • Papeš D, Radić J (1982) Reports. In: Löve Á (ed) Chromosome number reports LXXVII. Taxon 31:769–770

  • Pecinka A, Suchánková P, Lysak MA, Trávniček B, Doležel J (2006) Nuclear DNA content variation among Central European Koeleria taxa. Ann Bot 98:117–122

    Article  PubMed  CAS  Google Scholar 

  • Pellicer J, Garcia S, Garnatje T, Dariimaa S, Korobkov AA, Vallès J (2007) Chromosome numbers in some Artemisia (Asteraceae, Anthemideae) species and genome size variation in its subgenus Dracunculus: karyological, systematic and phylogenetic implications. Chromosom Bot 2:45–53

    Article  Google Scholar 

  • Pogan E, Jankun A, Wcisło H (1980) Further studies in chromosome numbers of Polish Angiosperms, part XIII. Acta Biol Cracov Ser Bot 22:37–69

    Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann Bot. 82(Suppl. A):107–115

  • Prodan J, Nyárády EI (1964) Centaurea L. In: Săvulescu T (ed) Flora republicii populare Romîne, vol 9. Editura Academiei Republicii Populare Romîne, Bucuresti, pp 785–951

    Google Scholar 

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79:470–474

    Article  Google Scholar 

  • Razaq ZA, Khatoon S, Ali SI (1988) A contribution to the chromosome numbers of Compositae from Pakistan. Pak J Bot 20:177–189

    Google Scholar 

  • Rosato M, Chiavarino AM, Naranjo CA, Camara Hernandez J, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). Am J Bot 85:168–174

    Article  PubMed  CAS  Google Scholar 

  • Sârbu A (ed) (2007) Arii speciale pentru protectia si conservarea plantelor in România. Editura Victor B Victor, Bucuresti

    Google Scholar 

  • SAS Institute (2000) SAS OnlineDoc®, version 8. SAS Institute, Cary, NC. http://v8doc.sas.com/sashtml. Accessed 16 July 2008

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann Ch (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

    Article  PubMed  Google Scholar 

  • Şerbănescu I (1959) Cercetări asupra vegetaţiei din estul Câmpiei Române. Dări de Seamă ale Sociatăţii Române de Geobotanică 42:469–508

    Google Scholar 

  • Siljak-Yakovlev S, Solic ME, Catrice O, Brown SC, Papeš D (2005) Nuclear DNA content and chromosome number in some diploid and tetraploid Centaurea (Asteraceae: Cardueae) from the Dalmatia region. Pl Biol 7:397–404

    Article  CAS  Google Scholar 

  • Slovák M, Vít P, Urfus T, Suda J (2009) Complex pattern of genome size variation in a polymorphic member of the Asteraceae. J Biogeogr 36:372–384

    Article  Google Scholar 

  • Šmarda P (2006) DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca L., Poaceae), measured in fresh and herbarium material. Folia Geobot 41:417–432

    Article  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678

    Article  PubMed  Google Scholar 

  • Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61

    Google Scholar 

  • Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008a) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433

    PubMed  Google Scholar 

  • Šmarda P, Bureš P, Horová L, Rotreková O (2008b) Intrapopulation genome size dynamic in Festuca pallens. Ann Bot 102:599–607

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603

    Article  PubMed  Google Scholar 

  • Štěpánek J (2004) Cyanus Mill. In: Štěpánek J, Štěpánková J (eds) Květena České republiky 7. Academia, Praha, pp 451–458

    Google Scholar 

  • Strid A, Franzén R (1981) Reports. In: Löve Á (ed) Chromosome number reports LXXIII. Taxon 30:829–842

    Google Scholar 

  • Stuessy TF (2009) Plant taxonomy: the systematic evaluation of comparative data, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium subgen. Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335

    Article  PubMed  Google Scholar 

  • Suda J, Trávníček P, Mandák B, Berchová-Bímová K (2010) Genome size as a marker for identifying the invasive alien taxa in Fallopia section Reynoutria. Preslia 82:97–106

    Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  PubMed  CAS  Google Scholar 

  • Wagenitz G, Hellwig FH (1996) Evolution of characters and phylogeny of the Centaureinae. In: Hind DJN, Beentje HJ (eds) Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994, vol 1. Royal Botanic Garden, Kew, pp 491–510

  • Zar JR (1999) Biostatistical Analysis, ed. 4. Prentice Hall, Upper Saddle River, New Jersey

Download references

Acknowledgments

We thank Iva Hodálová and Carsten Löser, for valuable discussion, Tomáš Šingliar, for correction of our English, and Dušan Senko, for his help with preparation of the map and obtaining bioclimatic data. This study was supported by the Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (projects VEGA 2/0026/09 and VEGA 2/0075/11). Purchase of the Partec CyFlow cytometer was supported by a donation from the Alexander von Humboldt foundation (Bonn, Germany) to Judita Lihová and Karol Marhold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Olšavská.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olšavská, K., Perný, M., Španiel, S. et al. Nuclear DNA content variation among perennial taxa of the genus Cyanus (Asteraceae) in Central Europe and adjacent areas. Plant Syst Evol 298, 1463–1482 (2012). https://doi.org/10.1007/s00606-012-0650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0650-4

Keywords

Navigation