Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 8, pp 1463–1482 | Cite as

Nuclear DNA content variation among perennial taxa of the genus Cyanus (Asteraceae) in Central Europe and adjacent areas

  • Katarína Olšavská
  • Marián Perný
  • Stanislav Španiel
  • Barbora Šingliarová
Original Article

Abstract

The genome size of 265 plants and the GC content of 126 plants from 63 populations of the Cyanus triumfetti and Cyanus montanus groups, collected across the Carpathians, Pannonia, Bohemian Massif, and Western and Dinaric Alps were determined by PI and DAPI flow cytometry. Variation of the nuclear DNA content among homoploid species, and intraspecific and interpopulation variation were confirmed in simultaneous analyses. The 2C-value at the diploid level (the C. triumfetti group) varied from 2.53 for Cyanus dominii subsp. sokolensis to 3.06 pg for C. triumfetti s.s. (1.21-fold range). At the tetraploid level (the C. montanus group), the 2C-value varied from 5.19 for Cyanus mollis to 5.84 pg for C. montanus (1.13-fold range). High intraspecific and interpopulation variation in the amount of nuclear DNA in the C. triumfetti group correlates with the extensive morphological variation found in this group. Significant between-species differences in genome size indicate that this attribute may be used as a supportive taxonomic marker for both of the groups studied. The GC content varied by 2.93 %, from 39.46 % for “Cyanus axillaris” to 40.61 % for Cyanus adscendens; this character is of no value for taxonomic purposes. Genome size of the studied populations is significantly higher in southern parts of the distribution area and at higher elevations. Plants with smaller genomes tend to occur in dry areas at low altitudes with high diurnal and annual temperature oscillations. The GC content of the populations studied is significantly correlated with longitude, increasing from east to west; and plants with GC-rich genomes are concentrated in the coldest areas with low minimum temperatures.

Keywords

Base composition Cyanus triumfetti group Environmental conditions Flow cytometry Homoploid species Taxonomy 

Notes

Acknowledgments

We thank Iva Hodálová and Carsten Löser, for valuable discussion, Tomáš Šingliar, for correction of our English, and Dušan Senko, for his help with preparation of the map and obtaining bioclimatic data. This study was supported by the Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (projects VEGA 2/0026/09 and VEGA 2/0075/11). Purchase of the Partec CyFlow cytometer was supported by a donation from the Alexander von Humboldt foundation (Bonn, Germany) to Judita Lihová and Karol Marhold.

Supplementary material

606_2012_650_MOESM1_ESM.pdf (14 kb)
Supplementary material 1 (PDF 15 kb)

References

  1. Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR (2008) Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Pl Syst Evol 276:9–19CrossRefGoogle Scholar
  2. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911PubMedCrossRefGoogle Scholar
  3. Baltisberger M (1991) Cytological investigations of some Greek plants. Fl Medit 1:157–173Google Scholar
  4. Bancheva ST (1998) Reports (970–976). In: Kamari G, Felber F, Garbari F (eds) Mediterranean chromosome number reports 8. Fl Medit 8:273–280Google Scholar
  5. Bancheva ST, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Pl Syst Evol 257:95–117CrossRefGoogle Scholar
  6. Bancheva ST, Raimondo FM (2003) Biosystematic studies of seven Balkan species from genus Cyanus (Compositae). Bocconea 16:507–527Google Scholar
  7. Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7PubMedCrossRefGoogle Scholar
  8. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986PubMedCrossRefGoogle Scholar
  9. Bennett MD, Leitch IJ (2010) Plant DNA C-values database (Release 5.0. December 2010). http://data.kew.org/cvalues. Accessed 22 Feb 2011
  10. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909CrossRefGoogle Scholar
  11. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90PubMedCrossRefGoogle Scholar
  12. Borhidi I (1957) Centaurea achtarovii Urumoff dans les Carpathes orientaux. Annotations sur le groupe Centaurea triumfettii All. Ann Hist-Nat Mus Natl Hung 7:219–225Google Scholar
  13. Boršić I, Susanna A, Bancheva S, Garcia-Jacas N (2011) Centaurea sect. Cyanus: nuclear phylogeny, biogeography and life-form evolution. J Plant Sci 172:238–249CrossRefGoogle Scholar
  14. Bureš P, Wang YF, Horová L, Suda J (2004) Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363PubMedCrossRefGoogle Scholar
  15. Ciocârlan V (2000) Flora ilustrată a României. Editura Ceres, BucureştiGoogle Scholar
  16. Cosendai A-C, Hörandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470PubMedCrossRefGoogle Scholar
  17. Cosendai A-C, Rodewald J, Hörandl E (2011) Origin and distribution of autopolyploids via apomixis in the alpine plant species Ranunculus kuepferi (Ranunculaceae). Taxon 60:355–364Google Scholar
  18. Czerepanov SK (1963) Podrod Cyanus. In: Bobrov EG, Czerepanov SK (eds) Flora SSSR 28. Botanicheskii institut V.L. Komarova Akademii Nauk SSSR, Leningrad, pp 387–418Google Scholar
  19. Damboldt O, Matthäs C (1975) Chromosome numbers of some Mediterranean and C. European Centaurea species (Asteraceae). Pl Syst Evol 123:107–115CrossRefGoogle Scholar
  20. Dihoru G, Negrean G (2009) Cartea roşie a plantelor vasculare din România. Editura Academiei Române, BucureştiGoogle Scholar
  21. Dobeš C, Vitek E (2000) Documented chromosome number checklist of Austrian vascular plants. Verlag des Naturhistorischen Museums Wien, WienGoogle Scholar
  22. Dobrochayeva DM (1949) Voloshky URSR, ikh poshyrennya ta istoriya rozvytku. Bot Zhurn 6:63–77Google Scholar
  23. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631CrossRefGoogle Scholar
  24. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  25. Dostál J (1976) Centaurea L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 4. Cambridge University Press, Cambridge, pp 254–301Google Scholar
  26. Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148Google Scholar
  27. Ekrt L, Holubová R, Trávníček P, Suda J (2010) Species boundaries and frequency of hybridization in the Dryopteris carthusiana (Dryopteridaceae) complex: a taxonomic puzzle resolved using genome size data. Am J Bot 97:1208–1219PubMedCrossRefGoogle Scholar
  28. Garcia-Jacas N, Susanna A, Vilatersana R, Guara M (1998) New chromosome counts in the subtribe Centaureinae (Asteraceae, Cardueae) from West Asia. II. Bot J Linn Soc 128:403–412CrossRefGoogle Scholar
  29. Garcia-Jacas N, Susanna A, Garnatje T, Vilatersana R (2001) Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloropast DNA analysis. Ann Bot 87:503–515CrossRefGoogle Scholar
  30. Garnatje T, Garcia S, Vilatersana R, Vallès J (2006) Genome size variation in the genus Carthamus L. (Asteraceae, Cardueae): systematic implications and additive changes during allopolyploidization in hybrid taxa. Ann Bot 97:461–467PubMedCrossRefGoogle Scholar
  31. Garnatje T, Garcia S, Canela MÁ (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographical implication. Pl Syst Evol 264:117–134CrossRefGoogle Scholar
  32. Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorimetry useful for calculating genomic base composition. Cytometry 14:618–626PubMedCrossRefGoogle Scholar
  33. Gonnet J-F (1992) Flavonoid glycoside variation in wild specimens of Centaurea montana (Compositae). Biochem Syst Ecol 20:149–161CrossRefGoogle Scholar
  34. Gonnet J-F (1993) Flavonoid glycoside variation in wild specimens of Centaurea triumfetti (Compositae) and comments on its relationships with Centaurea montana based on flavonoid fingerprints. Biochem Syst Ecol 21:389–396CrossRefGoogle Scholar
  35. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98PubMedCrossRefGoogle Scholar
  36. Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  37. Greuter W (2006–2009) Compositae (pro parte majore). In: Greuter W, Raab-Straube E von (eds) Compositae. Euro + Med Plantbase—the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed. Accessed 22 Feb 2011
  38. Grime JP, Shacklock JML, Band SR (1985) Nuclear DNA amounts, shoot phenology and species coexistence in a limestone grassland community. New Phytol 100:435–445CrossRefGoogle Scholar
  39. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  40. Hollingsworth PM, Gornall RJ, Bailey JP (1992) Contributions to a cytological catalogue of the British and Irish flora, 2. Watsonia 19:134–137Google Scholar
  41. Jones N, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423PubMedCrossRefGoogle Scholar
  42. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCrossRefGoogle Scholar
  43. Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76CrossRefGoogle Scholar
  44. Krähenbühl M, Küpfer P (1992) Reports (92–97). In: Kamari G, Felber F, Garbari F (eds) Mediterranean chromosome number reports—2. Fl Medit 2:255–258Google Scholar
  45. Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon Press, OxfordGoogle Scholar
  46. Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96Google Scholar
  47. Leitch IJ, Bennett MD (2007) Genome size and its use: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 153–156Google Scholar
  48. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-value provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl. 1):85–94CrossRefGoogle Scholar
  49. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (1998) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814PubMedCrossRefGoogle Scholar
  50. Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma L. (Zingiberaceae). Ann Bot 100:500–526Google Scholar
  51. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  52. Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907–919PubMedCrossRefGoogle Scholar
  53. Lipper W, Heubl GR (1988) Chromosomenzahlen von Pflanzen aus Bayern und angrenzenden Gebieten. Ber Bayer Bot Ges 59:13–22Google Scholar
  54. Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21Google Scholar
  55. MacGillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Funct Ecol 9:320–325CrossRefGoogle Scholar
  56. Marhold K, Mártonfi P, Mereďa jun P, Mráz P (eds) (2007) Chromosome number survey of the ferns and flowering plants of Slovakia. Veda, BratislavaGoogle Scholar
  57. Marhold K, Kudoh H, Pak J-H, Watanabe K, Španiel S, Lihová J (2010) Cytotype diversity and genome variation in eastern Asia polyploidy Cardamine (Brassicaceae) species. Ann Bot 105:249–264PubMedCrossRefGoogle Scholar
  58. Meister A, Barow M (2007) DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 177–215Google Scholar
  59. Meriç Ç, Arda H, Güler N, Sergun D (2010) Chromosome number and nuclear DNA content of Centaurea kilaea (Asteraceae), an endemic species from Turkey. Phytol Balcan 16:79–84Google Scholar
  60. Millionová H (2000) Taxonomická studie vytrvalých druhů rodu Cyanus Mill. v České republice. MSc. thesis, depon. in PřF UK PrahaGoogle Scholar
  61. Mosyakin SL, Fedoronchuk MM (1999) Vascular plants of Ukraine: a nomenclatural checklist. National Academy of Sciences of Ukraine, M. G. Kholodny Institute of Botany, KievGoogle Scholar
  62. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125PubMedCrossRefGoogle Scholar
  63. Olšavská K, Perný M (2009) Cyanus graminifolius. In: Marhold K (ed) IAPT/IOPB chromosome data 7. Taxon 58:181–183Google Scholar
  64. Olšavská K, Perný M, Hodálová I (2008) Morphological and karyological variation of the Cyanus triumfettii group (Asteraceae) in the Western Carpathians. In: Anonymous (ed) Book of Abstracts, Xth Symposium of the International Organisation of Plant Biosystematists, 2–4 July, Vysoké Tatry, Slovakia, p 86Google Scholar
  65. Olšavská K, Perný M, Mártonfi P, Hodálová I (2009) Cyanus triumfettii subsp. triumfettii (Compositae) does not occur in the western Carpathians and adjacent parts of Pannonia: karyological and morphological evidence. Nord J Bot 27:21–36Google Scholar
  66. Olšavská K, Perný M, Kučera J, Hodálová I (2011) Biosystematic study of the Cyanus triumfetti group in Central Europe. Preslia 83:59–98Google Scholar
  67. Oprea A (2005) Lista critică a plantelor vasculare din România. Editura Universitatii Alexandru Ioan Cuza, IaşiGoogle Scholar
  68. Papeš D, Radić J (1982) Reports. In: Löve Á (ed) Chromosome number reports LXXVII. Taxon 31:769–770Google Scholar
  69. Pecinka A, Suchánková P, Lysak MA, Trávniček B, Doležel J (2006) Nuclear DNA content variation among Central European Koeleria taxa. Ann Bot 98:117–122PubMedCrossRefGoogle Scholar
  70. Pellicer J, Garcia S, Garnatje T, Dariimaa S, Korobkov AA, Vallès J (2007) Chromosome numbers in some Artemisia (Asteraceae, Anthemideae) species and genome size variation in its subgenus Dracunculus: karyological, systematic and phylogenetic implications. Chromosom Bot 2:45–53CrossRefGoogle Scholar
  71. Pogan E, Jankun A, Wcisło H (1980) Further studies in chromosome numbers of Polish Angiosperms, part XIII. Acta Biol Cracov Ser Bot 22:37–69Google Scholar
  72. Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann Bot. 82(Suppl. A):107–115Google Scholar
  73. Prodan J, Nyárády EI (1964) Centaurea L. In: Săvulescu T (ed) Flora republicii populare Romîne, vol 9. Editura Academiei Republicii Populare Romîne, Bucuresti, pp 785–951Google Scholar
  74. Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79:470–474CrossRefGoogle Scholar
  75. Razaq ZA, Khatoon S, Ali SI (1988) A contribution to the chromosome numbers of Compositae from Pakistan. Pak J Bot 20:177–189Google Scholar
  76. Rosato M, Chiavarino AM, Naranjo CA, Camara Hernandez J, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). Am J Bot 85:168–174PubMedCrossRefGoogle Scholar
  77. Sârbu A (ed) (2007) Arii speciale pentru protectia si conservarea plantelor in România. Editura Victor B Victor, BucurestiGoogle Scholar
  78. SAS Institute (2000) SAS OnlineDoc®, version 8. SAS Institute, Cary, NC. http://v8doc.sas.com/sashtml. Accessed 16 July 2008
  79. Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann Ch (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103PubMedCrossRefGoogle Scholar
  80. Şerbănescu I (1959) Cercetări asupra vegetaţiei din estul Câmpiei Române. Dări de Seamă ale Sociatăţii Române de Geobotanică 42:469–508Google Scholar
  81. Siljak-Yakovlev S, Solic ME, Catrice O, Brown SC, Papeš D (2005) Nuclear DNA content and chromosome number in some diploid and tetraploid Centaurea (Asteraceae: Cardueae) from the Dalmatia region. Pl Biol 7:397–404CrossRefGoogle Scholar
  82. Slovák M, Vít P, Urfus T, Suda J (2009) Complex pattern of genome size variation in a polymorphic member of the Asteraceae. J Biogeogr 36:372–384CrossRefGoogle Scholar
  83. Šmarda P (2006) DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca L., Poaceae), measured in fresh and herbarium material. Folia Geobot 41:417–432CrossRefGoogle Scholar
  84. Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678PubMedCrossRefGoogle Scholar
  85. Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61Google Scholar
  86. Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008a) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433PubMedGoogle Scholar
  87. Šmarda P, Bureš P, Horová L, Rotreková O (2008b) Intrapopulation genome size dynamic in Festuca pallens. Ann Bot 102:599–607PubMedCrossRefGoogle Scholar
  88. Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603PubMedCrossRefGoogle Scholar
  89. Štěpánek J (2004) Cyanus Mill. In: Štěpánek J, Štěpánková J (eds) Květena České republiky 7. Academia, Praha, pp 451–458Google Scholar
  90. Strid A, Franzén R (1981) Reports. In: Löve Á (ed) Chromosome number reports LXXIII. Taxon 30:829–842Google Scholar
  91. Stuessy TF (2009) Plant taxonomy: the systematic evaluation of comparative data, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  92. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium subgen. Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335PubMedCrossRefGoogle Scholar
  93. Suda J, Trávníček P, Mandák B, Berchová-Bímová K (2010) Genome size as a marker for identifying the invasive alien taxa in Fallopia section Reynoutria. Preslia 82:97–106Google Scholar
  94. Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643PubMedCrossRefGoogle Scholar
  95. Wagenitz G, Hellwig FH (1996) Evolution of characters and phylogeny of the Centaureinae. In: Hind DJN, Beentje HJ (eds) Compositae: Systematics. Proceedings of the International Compositae Conference, Kew, 1994, vol 1. Royal Botanic Garden, Kew, pp 491–510Google Scholar
  96. Zar JR (1999) Biostatistical Analysis, ed. 4. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Katarína Olšavská
    • 1
  • Marián Perný
    • 1
  • Stanislav Španiel
    • 1
    • 2
  • Barbora Šingliarová
    • 1
  1. 1.Institute of BotanySlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Department of BotanyFaculty of Science, Charles UniversityPrahaCzech Republic

Personalised recommendations