Plant Systematics and Evolution

, Volume 298, Issue 7, pp 1407–1414 | Cite as

Phylogenetic studies in the polyploid complex of the genus Leucanthemum Mill. (Compositae, Anthemideae) based on cpDNA sequence variation

  • Roland Greiner
  • Robert Vogt
  • Christoph OberprielerEmail author
Short Communication


To reconstruct the evolutionary history of the polyploid southern and central European genus Leucanthemum, comprising 41 species with ploidy levels ranging from 2x to 22x, we analysed chloroplast DNA sequence variation (psbA-trnH and trnL-trnF intergenic spacer regions) of 106 representatives belonging to 30 species and 41 taxa. In an unrooted haplotype network, which shows internal (ancestral) haplotypes that are mainly represented by diploid taxa (L. gallaecicum, L. gracilicaule, L. halleri, L. laciniatum, L. lithopolitanicum, L. rotundifolium, and L. tridactylites), we identified three major haplotype groups (HTGs) containing diploid and polyploid species. Whereas HTG I contains most of the polyploid taxa of the genus, with a single diploid species from the SW Alps (L. virgatum), HTG II consists of four diploid (L. burnatii, L. gaudinii, L. graminifolium, and L. vulgare) and six polyploid species, and HTG III comprises one diploid (L. pluriflorum) and three polyploid species endemic to the NW part of the Iberian Peninsula. We also further found evidence for recurrent formation of at least three polyploid taxa (i.e., L. delabrei, L. ircutianum subsp. cantabricum, and L. pallens).


Asteraceae Chloroplast DNA Hybridisation Polyploidy trnL-trnpsbA-trn



The technical help of Mr Peter Hummel in the molecular laboratory of the working group at the University of Regensburg is gratefully acknowledged. We would like to express our thanks to two reviewers of a former version of the paper who substantially improved the contribution.


  1. Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Brysting AK, Mathiesen C, Marcussen T (2011) Challenge in polyploid phylogenetic reconstruction: a case story from the arctic-alpine Cerastium alpinum complex. Taxon 60:333–347Google Scholar
  3. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  4. Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438CrossRefGoogle Scholar
  5. Conti E, Soltis DE, Hardig TM, Schneider J (1999) Phylogenetic relationships of the Silver Saxifrages (Saxifraga, Sect. Ligulatae Haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol Phylogenet Evol 13:536–555PubMedCrossRefGoogle Scholar
  6. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458CrossRefGoogle Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bulletin 19:11–15Google Scholar
  8. Ehrendorfer F (1980) Hybridisierung, Polyploidie und Evolution bei europäisch-mediterranen Orchideen. Die Orchidee Sonderheft, 15–34Google Scholar
  9. Euro+Med (2006) Euro+Med PlantBase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet
  10. Grant V (1981) Plant speciation. Columbia University Press, New York and LondonGoogle Scholar
  11. Grassi F, Minuto L, Casazza G, Labra M, Sala F (2009) Haplotype richness in refugial areas: phylogeographical structure of Saxifraga callosa. J Plant Res 22:377–387CrossRefGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523PubMedGoogle Scholar
  14. Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effects of interspecific diversity and plastid transmission. Taxon 40:393–412CrossRefGoogle Scholar
  15. Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:435–444CrossRefGoogle Scholar
  16. Lewis WH (1980) Polyploidy. Biological relevance. Plenum Press, New York and LondonGoogle Scholar
  17. Marcussen T, Jakobsen KS, Danihelka J, Ballard HE, Blaxland K, Brysting AK, Oxelman B (2012) Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst Biol 61:107–126PubMedCrossRefGoogle Scholar
  18. Oberprieler C (1998) The systematic of Anthemis L. (Compositae, Anthemideae) in W and C North Africa. Bocconea 9:1–328Google Scholar
  19. Oberprieler C (2005) Temporal and spatial diversification of circum-Mediterranean Compositae-Anthemideae. Taxon 54:951–966CrossRefGoogle Scholar
  20. Oberprieler Ch, Eder C, Meister J, Vogt R (2011) AFLP fingerprinting indicates the allopolyploid origin of two members of the Leucanthemum vulgare aggregate (Compositae, Anthemideae) in Central Europe. Nordic J Bot 29:370–377CrossRefGoogle Scholar
  21. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437PubMedCrossRefGoogle Scholar
  22. Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60:373–389Google Scholar
  23. Ronikier M, Cieślak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol Ecol 17:1763–1775PubMedCrossRefGoogle Scholar
  24. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  25. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352PubMedCrossRefGoogle Scholar
  26. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348PubMedCrossRefGoogle Scholar
  27. Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403Google Scholar
  28. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  29. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  30. Taberlet P, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  31. Tate JA, Soltis DE, Soltis PS (2005) Polyploidy in plants. In: Gregory TR (ed) The evolution of the genome, Elsevier, Amsterdam, pp 371–426Google Scholar
  32. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  33. Tribsch A, Schönswetter P (2003) Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the eastern Alps. Taxon 52:477–497CrossRefGoogle Scholar
  34. Vogt R (1991) Die Gattung Leucanthemum Mill. (Compositae, Anthemideae) auf der Iberischen Halbinsel. Ruizia 10:1–261Google Scholar
  35. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Nat Acad Sci 106:13875–13879PubMedCrossRefGoogle Scholar
  36. Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4:6Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Roland Greiner
    • 1
  • Robert Vogt
    • 2
  • Christoph Oberprieler
    • 1
    Email author
  1. 1.Institute of BotanyUniversity of RegensburgRegensburgGermany
  2. 2.Botanic Garden and Botanical Museum Berlin-DahlemFree University of BerlinBerlinGermany

Personalised recommendations